Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

III SEMESTER B.TECH (IP ENGG.) END SEMESTER EXAMINATIONS,

NOVEMBER 2017

SUBJECT: THERMAL ENGINEERING [MME 2113]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

2

4

2

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- ✤ Use of Thermodynamics data hand book is permitted
- **1A.** A cylinder contains 1 kg of certain fluid at an initial pressure of 1 bar. The fluid is 4 reversibly expanded according to the law p V² = C until the volume is doubled. Fluid is then cooled reversibly at constant pressure to its original position. Heat is then supplied reversibly at constant volume to a final pressure of 20 bar. The initial volume is 0.05 m^3 , find the net work done by the fluid.
- **1B.** What is a quasistatic process? Give an example.
- **1C** In a gas turbine unit, the gases flow at a rate of 15kg/s and the power developed by 4 the turbine is 12000 kW. The enthalpies at inlet and outlet are 1260kJ/kg and 400kJ/kg respectively. The velocities at inlet and outlet are 50m/s and 110m/s respectively. Calculate
 - a) The heat transfer rate from the turbine.
 - b) Area of the inlet pipe if Specific volume of the gas at inlet is $0.45 \text{ m}^3/\text{kg}$
- **2A.** State and prove Carnot theorem with necessary sketches.
- **2B.** State Kelvin Plank and Clausius statements on 2nd law of thermodynamics.
- 2C. 0.04 m³ of air contained in a cylinder behind a piston is initially at 1.05 bar and 15°C. 4 The gas is compressed isothermally and reversibly until the pressure is 4.8 bar. Calculate:
 - i) The change in entropy
 - ii) The heat flow
 - iii) The work done
 - Sketch the process on a p-V diagram.
- 3A. Explain Diesel cycle with the help of a pV diagram and derive the expression for thermal efficiency for the same.
- 3B. Explain the effect of boiler pressure, condenser pressure and superheating of steam 3 on Rankine cycle.
- 3C. In a Rankine cycle, the steam at inlet to turbine is saturated at a pressure of 35 bar 3 and the exhaust pressure is 0.2 bar. Determine :
 - i) Pump work and turbine work
 - ii) Dryness fraction at the end of expansion
 - iii) Rankine efficiency

- 4A. In an Otto cycle, the pressure at the end of compression is 15 times to that at the start, 4 temperature of air at the beginning of compression is 38°C and maximum temperature attained in the cycle is 1950°C. Determine
 - i) Compression ratio
 - ii) Thermal efficiency
 - iii) Work done
- **4B**. Derive the expression for minimum work and intermediate pressure in a two stage 4 reciprocating compressor with perfect intercooling, with necessary sketches.
- 4C. Mention the advantages of multi staging over single stage compressor.
- 5A. A Bell Coleman cycle operating between 1 MPa and 100 kPa is required to produce 5 200 kJ/min. Temperature of air leaving the cold chamber is -5°C and leaving the coller is 30°C.Determine:
 - i) Mass of air circulated per minute
 - ii) Compressor work, expander work and work done per cycle
 - iii) COP and power in kW required

5B.	Derive the expression for overall heat transfer coefficient for conduction through a	3
	plane wall with fluid interactions on both sides.	
5C	What is emissivity and state the concept of black body	2

5C. What is emissivity and state the concept of black body.

2