Reg. No.							
		1007	1		THE SECOND	100	

III SEMESTER B.TECH. (INFORMATION TECHNOLOGY) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: DIGITAL SYSTEMS [ICT 2102]

REVISED CREDIT SYSTEM (18/11/2017)

Time: 3 Hours

Instructions to Candidates:

- Answer ALL the questions.
- Missing data, if any, may be suitably assumed.

1A.	Design a synchronous sequential circuit using Mealy model, with one input X and one output Y. The output Y is to be HIGH whenever the sequence "0100101" is detected. Otherwise the output is LOW. Overlapping of the sequence is allowed. Implement using D- flip flops and external gates.	5
1B.	Design a 2-bit subtractor using 74153 ICs and external gates.	3
1C.	Design 5:32 decoder using 74138 ICs and one external gate.	2
2A.	Design a code converter to convert a decimal digit represented in Excess-3 to decimal digit represented in 8 4 -2 -1 code, using NAND gates only.	5
2B.	Using a suitable PROM, implement a logic function to perform the square of a 3-bit binary number.	3
2C.	Design a 3-bit bi-directional shift register using D flip flops, 2:1 MUXs and external gates.	2
3A.	Design a 3-bit synchronous gray code UP/DOWN counter using JK flip flops and external gates.	5
3B.	Design a single digit decimal adder using 7483 ICs and external NAND gates.	3
3C.	Design 8 – bit binary UP counter to count from N ₁ to N ₂ using 74193 ICs, 7485 ICs	2
	and external gates. Assume $N_1 < N_2$.	

MAX. MARKS: 50

4A.	Simplify the given function 'F' using tabulation method. Implement the simplified expression using basic logic gates. $F(A,B,C,D,E) = \sum m(3,5,6,9,11,12,15,21,25,27) + \sum d(2,8,20,22,30)$	5
4B.	Design a MOD 9 asynchronous down counter using T flip flops. Using the same, generate the sequence 110010010. Use external gates if required.	3
4C.	Why is Carry Look Ahead adder faster than Carry Propagation adder?	2
5A.	Design $4 - bit \times 4 - bit$ binary multiplier using 7483 ICs and minimum number of external NAND gates.	5
er		
5B.	Design a 3-bit magnitude comparator using logic gates.	3
5C.	Design a D flip flop using JK flip flop.	2

ICT 2102