	Reg. No.					
MANIPAL INST MANIPAL A Constituent Institution of Manipal University THIRD SEMESTER B.TH EXAMIN	STITU ECH (CS/IT/ ATIONS, D	ΓΕ C ⁽ CC en ecemi	OF T	ECE ERING) 017	INO make	LOGY
SUBJECT: ENG REVI	GINEERING [MAT -2 SED CRED (28/12/20	6 MATI 2105] 917 SYS 917)	HEMA' STEM	TICS -I	II	

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL questions.

✤ All questions carry equal marks.

1A.	Let a, b, c be elements in a Lattice $\langle A, \leq \rangle$. Show that , if $a \leq b$, then $a \lor (b \land c) \leq b \land (a \lor c)$	3
1 B .	Show that number of partitions of n is equal to number of partitions of 2n with exactly n parts.	3
1C.	Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$ Is the converse true? Justify your answer.	4
2A.	Given $n = 5$ and the five marks 1, 2, 3, 4, 5what are the 50 th and 100 th permutationsin the following order a) Lexicographicalb) Fike's ordering.	3
2B.	Show that the proportion of permutations of $\{1, 2, 3,, n\}$ which contain no consecutive pair (i, i + 1), for any i is approximately $\frac{(n+1)}{ne}$.	3
2C.	Show that a (p, q) graph G is a tree if and only if it is acyclic and $p = q + 1$	4
3A.	Let H and K be subgroups of a group G. Show that $H \cap K$ is a subgroup of G. Is $H \cup K$ a subgroup of G?	3
3B.	Show that $R \land (P \lor Q)$ is a valid conclusion from the premises	3

	$P \lor Q, Q \rightarrow R, P \rightarrow M$, and M .	
3C.	Let $\langle A, \lor, \land, - \rangle$ be a finite Boolean algebra. Let b be any non zero element in A	
	and $a_1, a_2,,a_k$ be all the atoms of A such that $a_i \leq b$. Prove that $b = a_1 \vee a_2 \vee$	4
	$\dots \vee a_k$ is the unique way to represent b as join of atoms.	
4 A.	If a number has only two different prime factors p_1 and p_2 show that $f(n)$. the	
	number of possible integers less than n and prime to n, is given by	3
	$f(n) = n \left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)$	
4B.	Show that for any graph G either G or \overline{G} is connected. Hence, show that every self complementary graph is connected.	3
4C.	Let G be a group and H be a subgroup of G. Show that any two right cosets of H	
	in G are either identical or disjoint. Also, show that any two right cosets of H in G	4
	have the same number of elements.	
5A.	Show that if a lattice is distributive then for elements a, b, c	3
	$(a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \lor c) \land (c \lor a)$	
5B.	Let $E(x_1, x_2, x_3) = \overline{(x_1 \lor x_2)} \lor (\overline{x_1} \land x_3)$ be a Boolean expression over the two	
	valued Boolean algebra. Write $E(x_1, x_2, x_3)$ in both disjunctive and conjunctive	3
	normal forms.	
5C.	Define a distance matrix. Write a distance matrix and find the best distance from the point C to $A = B$ and E	
	the point C to A, B, D and E.	
	A	4