

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

LIFE A Constituent Institution of Manipal University

THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, NOV - 2017

SUBJECT: ANALOG ELECTRONICS CIRCUIT [ICE 2104]

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Use neat diagrams where ever needed.

1A.	With a neat diagram describe the characteristics of p-type depletion MOSFET	3
1B.	For the circuit in Fig. Q1B, compute biasing parameters V_{GSQ} , I_{DQ} , V_{DS} , and V_D , having $V_{GS(Th)} = 4V$; $I_{D(0n)} = 2.4$ mA; $V_{GS(0n)} = 10V$.	4
1C.	From the FET characteristics shown in Fig. Q1C find trans-conductance, amplification factor, and gate cutoff current.	3
2A.	Derive the expression for biasing parameters in a common gate D-MoSFET circuit.	3
2B.	Determine the amplifier parameters (input impedance, output impedance, gain and output voltage) for the circuit shown in Fig. Q2B having I_{DSS} = 7mA; V_p = 6V; V_{GSQ} = 2.4V; $r_D = \infty$. Represent the model of the same.	4
2C.	Discuss the working of cascode amplifier, also indicating its importance.	3
3A.	For the circuit shown in Fig. 3QA determine input impedance, output impedance, and gain, having $I_{DSS} = 6mA$; $V_p = -4V$; $V_{GSQ} = -1.8V$; $r_D = 20k\Omega$	5
3B.	Plot the low frequency response characteristics of the circuit shown in Fig. 3QB having $I_{DSS} = 8mA$; $V_p = -5V$; $V_{GSQ} = -2.1V$; $r_D = 10k\Omega$	3
3C.	List the advantages of feedback for an amplifier	2
4A.	Derive the expression for input impedance, output impedance, and gain of voltage shunt feedback amplifier.	4
4B.	Obtain the expression for voltage gain of voltage series feedback amplifier in fixed bias.	3
4C.	Design a wein-bridge oscillator with self-bias configuration for a frequency of 50kHz	3
5A.	Compare the design and working of Hartley and Colpitt's oscillator's	4
5B.	Classify power amplifiers on efficiency.	3
5C.	Explain the working of Class AB power amplifier.	3

Fig. Q3A