

## THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, NOV - 2017

SUBJECT: DIGITAL ELECTRONIC CIRCUTS [ICE 2103]

Duration: 3 Hour

Max. Marks:50

|            | Instructions to Candidates:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
|            | <ul> <li>Answer ALL the questions.</li> <li>Missing data may be suitably assumed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |
| 1A         | Match the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / |  |  |
|            | <ul> <li>a. XS-3 code</li> <li>b. Anti-coincidence Detector</li> <li>c. Equality detector</li> <li>d. Uni-distance Code</li> <li>ii XOR gate</li> <li>iii Biquinary</li> <li>iv Self-complementary 8421 code</li> <li>vi XNOR gate</li> </ul>                                                                                                                                                                                                                                            |   |  |  |
| 1B         | Realize the circuit shown in FIG Q.1B, using only 2 input NAND gates.                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
| 1C         | Minimize the following expression using Quine-McCluskey method.<br>$f(A,B,C,D)=\Sigma m(1,2,3,5,9,12,14,15)+\Sigma d(4,8,11)$                                                                                                                                                                                                                                                                                                                                                            | - |  |  |
| 2A<br>2B   | In a certain chemical-processing plant, a liquid chemical is used in a manufacturing process. The chemical is stored in three different tanks. A level sensor in each tank produces a HIGH voltation when the level of chemical in the tank drops below a specified point. Design a circuit that monit the chemical level in each tank and indicates when the level in any two of the tanks drops below the specified point. Design and implement a Full Subtractor using Demultiplexer. |   |  |  |
| 2C         | Explain four bit addition using carry look ahead logic with suitable diagram.                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |
| 3A         | A given flip-flop is found to produce a toggling output state when both of its inputs are giv<br>active HIGH. Identify the flip-flop. Also, explain the cause of this output condition with pro-<br>diagrams                                                                                                                                                                                                                                                                             |   |  |  |
| <b>3B</b>  | Convert SR flip-flop into T flip-flop and draw the logic diagram.                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |
| 3C         | Design and implement the synchronous gray-code up counter using JK flip-flops.                                                                                                                                                                                                                                                                                                                                                                                                           | - |  |  |
| <b>4</b> A | Construct the truth table for the circuit shown in FIG Q.4A.                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |
| <b>4B</b>  | Explain the working of 4-bit parallel in serial out shift register using load and shift capability with help of neat diagram.                                                                                                                                                                                                                                                                                                                                                            | 2 |  |  |

| <b>4</b> C | Bring out the difference between<br>i) Moore and Mealy Model ii) Static and Dynamic hazards. | 3 |
|------------|----------------------------------------------------------------------------------------------|---|
| 5A         | State various applications of Shift register.                                                | 2 |
| 5B         | Design a BCD to Excess-3 code converter and implement using PAL.                             | 4 |
| 5C         | Analyze the sequential circuit shown in FIG Q.5C and draw the state diagram.                 | 4 |





FIG Q.4A

FIG Q.1B



FIG Q.5C