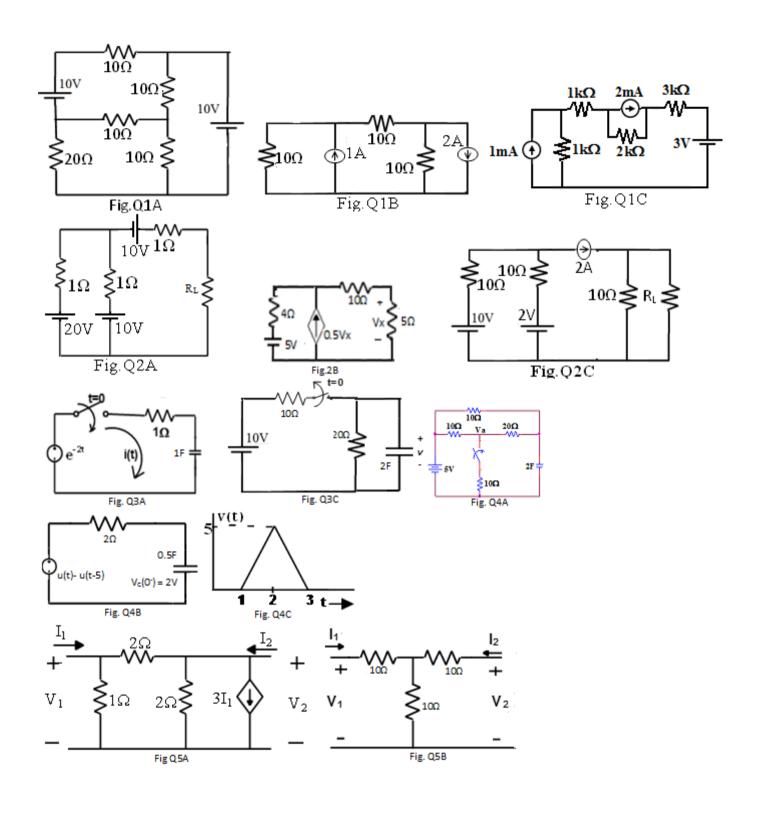


THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, DEC - 2017

SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ICE 2101]


Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

1A.	For the circuit shown in Fig.Q1A, determine the mesh currents.	5
1B.	Calculate all the node voltages for the circuit shown in Fig.Q1B	3
1C.	For the circuit shown in Fig.Q1C calculate the current in $3k\Omega$ resistor	2
2A.	Find R _L to deliver maximum power and the corresponding power in the circuit	5
2B.	shown in Fig.Q2A. Obtain Norton's equivalent circuit for the network shown in Fig.Q2B with respect to 5Ω resistor. Also find power dissipated in 5Ω resistor.	3
2C.	For the network shown in Fig.Q2C, determine the current through R_L = 10Ω resistor using superposition theorem	2
3A.	In the network of the Fig.Q3A the switch is closed at t=0. Obtain expression for current i(t) in complementary and particular solution form.	5
3B.	A resistance of 5Ω , capacitor of $10\mu F$ and Inductance of 10mH is connected in series with ac source of 50V. Determine the resonating frequency, quality factor and	3
3C.	bandwidth of the circuit. Also determine maximum power dissipated in the circuit. In the circuit shown in Fig.Q3C, find the expression for V for $t\ge0$, if switch is opened at $t=0$ assuming that a steady state having previously been attained.	2
4A.	In the network shown in Fig.Q4A, steady state is reached with switch open. At t=0 switch is closed. Determine the values of Va(0-) and Va(0+).	5
4B.	Use Laplace transform to obtain expression for current in the circuit shown in Fig.Q4B.	3
4C.	Express the waveform shown in Fig. Q4C using basic signals.	2
5A.	For the network shown in Fig.Q5A find Y parameters.	4
5B.	Obtain h parameters for the circuit network shown in Fig.Q5B	4
5C.	Plot $x(t) = u(t) - r(t) + r(t-1)$.	2

ICE 2101 Page 1 of 2

ICE 2101 Page 2 of 2