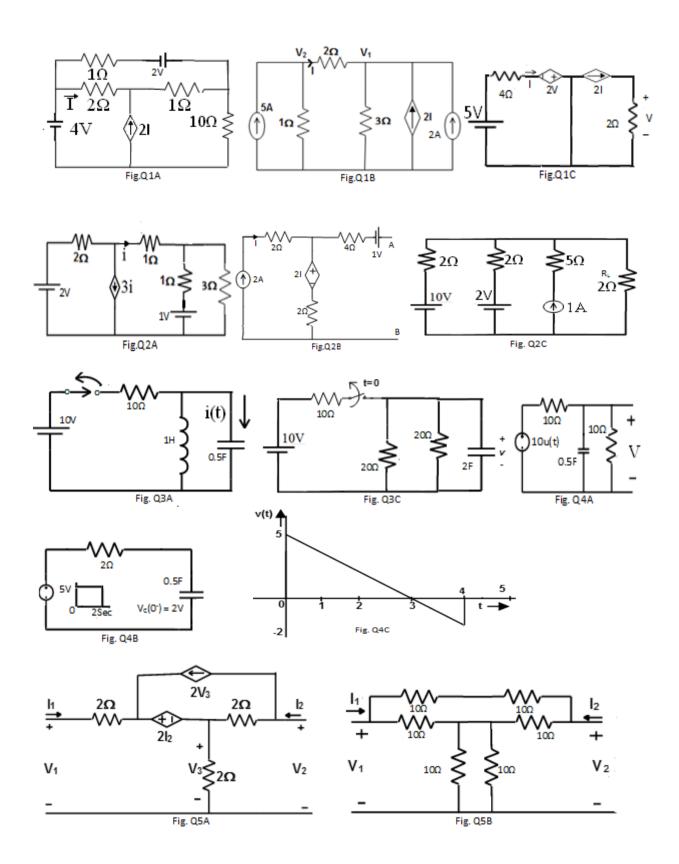


THIRD SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, NOV- 2017

SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ICE 2101]

Time: 3 Hours MAX. MARKS: 50


Instructions to Candidates:

❖ Answer **ALL** the questions.

Missing data may be suitable assumed.

1A.	Find the mesh currents in the circuit shown in Fig.Q1A.	5
1B.	Obtain node voltages V ₁ and V ₂ for the circuit shown in Fig.Q1B	3
1C.	Determine V in the circuit shown in Fig.Q1C.	2
2A.	Using Nortons's theorem determine current in 3Ω resistor of Fig.Q2A.	5
2B.	Obtain Thevinin's equivalent for the circuit shown in Fig.Q2B with respect to AB.	3
2C.	Using superposition theorem determine the current in R _L .	2
3A.	In the network shown Fig. Q3A, the switch is opened at t=0, a steady state having previously been attained. Obtain expression for current in complementary and particular solution form.	5
3B.	An impedance of (10-j5) Ω is connected in parallel with a coil with inductive reactance j10 Ω and variable coil resistance of R _L . Find the value of R _L for which the circuit is in resonant.	3
3C.	For the circuit shown in Fig.Q3C find V, if switch is opened at $t=0$ assuming that a steady state having previously been attained.	2
4A.	For the network shown in Fig. Q4A, find V, $dV/dt & d^2V/dt^2$ at t=0+.	5
4B.	Obtain expression for current in the circuit shown in Fig.Q4B.	3
4C.	Express the waveform shown in Fig. Q4C using basic signals.	2
5A.	For the circuit shown in Fig.Q5A, find h parameters	4
5B.	For the network shown in Fig.Q5B find Y parameters.	4
5C.	Sketch the signals (i) $x(t) = r(t) - r(t-1) - r(t-2) + r(t-3)$ (ii) $y(t) = 2u(t) - 4u(t-2) + 2u(t-4)$	2

ICE 2101 Page 1 of 2

ICE 2101 Page 2 of 2