

III SEMESTER B.TECH. (Mech/ IP/Auto/Aero/MT) END SEMESTER EXAMINATIONS, NOV 2017

SUBJECT: ENGINEERING MATHEMATICS III - MAT 2101

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.

1A.	Obtain the Fourier series for $f(x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & \pi \le x \le 2\pi \end{cases}$ and hence deduce $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$, given that $f(x + 2\pi) = f(x)$.	04
1B.		03
1	Solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$ subjected to the conditions $u(x,0) = 100 \sin \pi x$, $u(0,t) = u(1,t) = 0$. Compute u for one time step with $h = 0.25$ using Crank Nicolson's method	03
2A.	Classify and solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ $0 < x < 1$, $t > 0$ with $u(x,0) = 100(x - x^2)$, $\frac{\partial u}{\partial t}(x,0) = 0$, $u(0,t) = u(1,t) = 0$ Choosing $h = 0.25$ for four time steps.	04
2B. S	Solve $y'' + (1+x)y' - y = 1$ Subjected to the conditions $y(0) = y'(0)$, $y(1) + y'(1) = 1$ by taking $h = 0.5$	03

Reg. No.				
	-			_

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

	Find the constant term and the coefficient of the first sine and cosine terms in the Fourier expansion of y as given in the following table.								03
		0	1	2	3	4	5	6	
	y		18	24	28	26	20	9	-
3A.	Determine whether $\vec{F} = (y^2 \cos x + z^3)\hat{\imath} + (2y \sin x - 4)\hat{\jmath} + (3xz^2 + 2)\hat{k}$ is conservative? If so find scalar potential.								03
2D	From the Fourier integral show that $\int_0^\infty \frac{s \sin sx}{1+s^2} ds = \frac{\pi}{2} e^{-x} (x > 0)$								03
3B. 3C.	Find the Fourier transform of $f(x) = \begin{cases} a - x , & \text{for } x < a \\ 0, & \text{for } x > a > 0 \end{cases}$ that $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{3}$.								04
4A.	Derive the one dimensional heat equation with suitable assumptions.								
4B.	Find the constants a and b so that the surface $ax^2 - byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1, -1, 2)$								03
4C.	Given $\vec{A} = (yz + 2x)\hat{\imath} + xz\hat{\jmath} + (xy + 2z)\hat{k}$. Evaluate $\int \vec{A} \cdot d\vec{r}$ along the curve $x^2 + y^2 = 1 \& z = 1$ in the positive direction of $(0, 1, 1)$ to $(1, 0, 1)$								03
5A.	Solve the partial differential equation $U_{xx} + U_{xy} - 2U_{yy} = 0$ using the transformation $v = x + y$, $z = 2x - y$								03
5B.	Complete theorem in the plane								03
5C.	Verify divergence theorem for $\vec{A} = 4x \ i - 2y^2 \ j + z^2 \ k$ taken over the region bounded by $x^2 + y^2 = 4, z = 0 \ \& \ z = 3$.								04

Page 2 of 2 MAT 2101