

III SEMESTER B.TECH (MECH/AUTO/AERO/MT/IP)

END SEMESTER MAHEUP EXAMINATIONS DEC 2017

SUBJECT: ENGINEERING MATHEMATICS III(MAT 2101)

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates

Answer ALL the questions.

1A.	Solve $y'' = xy$, $y(0) - y'(0) = 1$, $y(1) = 1$ with $h = 0.5$	3
18.	Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$, $a > 0$	3
1C.	Verify the divergence theorem for $\vec{F} = 4xi - 2y^2j + z^2k$ taken over the region bounded by $x^2 + y^2 = 4$, $z = 0$ and $z = 3$	4
2A.	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, 0 < x < 1, 0 < y < 1, u(x, 1) = u(0, y) = 0, u(1, y) = 9(y - y^2), u(x, 0) = 9(x - x^2) \text{ and } h = \frac{1}{3}$	3
28.	Verify stoke's theorem for $\vec{F} = xzi - yj + x^2yk$, where S is the surface of the region bounded by $x = 0$, $y = 0$, $z = 0$, $2x + y + 2z = 8$, which is not included in the xz plane.	3
2C.	Find the fourier transform of $f(x) = e^{-a^2x^2}$, $a > 0$. Hence find the value for a so that $f(x)$ is self-reciprocal	4
3A.	Solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$, $u(x, 0) = 0$, $u(0, t) = 0$, $u(1, t) = 100t$. Compute u for one time step with $h = \frac{1}{4}$. $100t$.	3

13/12/17

	Control of the Contro		
Reg. No.			1 1 1 1
1109.110.			1 1 1 1
		1 1	

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Coust	itaeur Dist	anaion of	Mampai i	increasers

36.	Prove that $\vec{F} = (2xy + z^3)i + x^2j + 3xz^2k$ is a conservative force field. Hence								
		Find t	he scalar p he work do 2,1) to (3,	one in mov		bject in tl	nis field fi	rom	3
3C.	Obtain the Fourier series for the function								
	$f(x) = \begin{cases} \pi x, & 0 \le x \le 1\\ \pi (2 - x), 1 \le x \le 2 \end{cases}$						Ø,		
4A.	Find the constants a and b so that the surface $ax^2 - byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1, -1, 2)$						3		
48.	Derive D' Alembert's solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$						3		
AC.	Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$, $0 < x < 5$, $t > 0$, $u(x, 0) =$								
	$x^2(5-x),$						4		
	$\frac{\partial u}{\partial t}(x,0) = 0, u(0,t) = u(5,t) = 0, h = 1. \text{ Find } u \text{ for 4 time steps}$								
5A.	Obtain the Fourier expansion of $xsinx$, as a cosine series in the interval $(0,\pi)$						3		
5B.	Obtain the first two coefficients in the Fourier sine series for y, where y is given in the following table						3		
	X.	0	30	60	90	120	150	180	
	y	0	5224	8097	7850	5499	2626	0	
5C.	Solve $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ using method of separation of variables.					4			
