

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL A Constituent Institution of Manipal University

III SEMESTER B.TECH.

END SEMESTER EXAMINATIONS, NOV/DEC 2017

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2106]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

Find the standard deviation and mode for the following data.

1A.		11	70.00	00 00	00 04	04.06		00 00	4	
		lass	70-80	80 - 82	82 - 84	84 - 86	86-88	88 - 90		
	F	requency	3	15	26	23	9	4		
1B.	Obtain the half range cosine series for the function $f(x) = \begin{cases} \frac{\pi}{3}, 0 < x < \frac{\pi}{3} \\ 0, \frac{\pi}{3} < x < \frac{2\pi}{3} \\ -\frac{\pi}{3}, \frac{2\pi}{3} < x < \pi \end{cases}$									
1C	Find the directional derivative of $\varphi = x^2 yz - 4xyz^2$ at (1,3,1) in the direction of $\widehat{2\iota} - \widehat{j} - 2 \widehat{k}$.									
2A.	Comp	Compute the coefficient of skewness based on the quartiles.								
		Class	100-104	104 -1	08 108-1	12 112-1	16 116-120	120-124	4	
		Frequency	6	14	18	20	10	2		
2B.	A fluid motion is given by $V = (y + z)$ ils this $+(z + x)j + (x + y)k$. Is this motion irrotational? If so, find the scalar potential.									
2C.	Suppose the force field is given by $F = (2x - y + z) i + (x + y - z^2) j + (3x - 2y + 4z) k$. Find the work done in moving a particle once round a circle C in the xy – plane with its centre at the origin and a radius of 3.									
3A.	Verify Green's theorem in the plane for $\oint (xy + y^2)dx + x^2 dy$ where C is the closed curve of the region bounded by $y = x$ and $y = x^2$.									

	NSPIRED BY LIFE A C	ANIPAL	nipal University							
3B.	X	$\frac{20}{22.10}$	25	30	3	5 4	0			3
	Y	23.10	26.20	30.6	0 35.	.80 42	.90			
3C.	Form the partial differential equation by eliminating the arbitrary functions: z = f(x + ct) + g(x - ct).									
	Obtain the constant term and the coefficients of $\sin\theta$ and $\sin2\theta$ in the Fourier expansion of y									
4A.	x°	x ^o 0		120	180	240	0 3)0	4
	Y	9	18	24	28	26		20)	
4B .	Compute mean deviation from mean for the following distribution									-
	Class 40 - 60				0 100 -12	20 120-1	120-140 14		160-160	
	Frequence		47	31	8	2	2		3	
4C.	Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(0, y) = 8e^{-3y}$.									
5A.	Solve $U_{xx} + 2U_{xy} + U_{yy} = 0$ given $v = x$ and $z = x - y$.									4
	Find the missing values in the following distribution, given that the mean and median are 64.6 and 62.									
5B.	10-20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 -	80	80 - 90	3
	1	4	a	8	b	32	39)	42	
5C.	Obtain the fourier series for the function $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$									3