

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL A Constituent Institution of Manipal University

III SEMESTER B.TECH.

END SEMESTER MAKE-UP EXAMINATIONS, DEC 2017

SUBJECT: ENGINEERING MATHEMATICS-III [PME - MAT 2106]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

	Compute mean deviation from median for the following distribution														
1A.	Class		0 -	10	10 - 20		20-30		0 –40	40-50) 50	- 60		4	
	Frequency		7	2	10		20		15	10		3			
1 B .	Find the half range cosine series for $f(x) = 2x - 1$ in $0 < x < 1$											3			
1C	Form the partial differential equation by eliminating the arbitrary constants: $z=e^{ax+by} f(ax-by).$											3			
	Express y as a Fourier cosine series upto the second harmonics														
2A.	x°	0	60	120	180	24	0 3	00						4	
	Y	4	8	15	7	6	2								
2B.	Evaluate $\int \vec{F} \cdot d\vec{r}$, where $\vec{F} = (2y+3)\hat{\imath} + xz\hat{\jmath} + (yz-x)\hat{k}$ along the straight line from $(0,0,0)$ to $(2,1,1)$.										uight	3			
2C.	The runs obtained by two cricketers A and B in 10 innings are given below. Determine which of the two cricketers is a better scorer on an average and who is more consistent ?										3				
	A	A 31 48		13		51	38	43	50	36	47	82			
	В		51	5	12		83	37	112	42	18	79	20		
	Fit a	Fit a straight line for the following data using least square method.													
3A.		X			2	3		4	5	6	7	8	_		
	Y		2		5		9 5		2	17	18	18 20		4	
														1	

				Reg. No.											
	MAN THE MAN	NIPAL		STITU	UTE C)F TE	CH	NO	LOGY						
3B.	Evaluate $\iint_{S} F.n ds$ by divergence theorem, where $F = 4xz i - y^2 j + yz k$ and S is the surface of the cube bounded by $x = 0$, $y = 0$, $z = 0$, $x = 1$, $y = 1$, $z = 1$.														
3C.	Solve by the method of separation of variables $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ where $u(x, 0) = 4e^{-x}$														
4A.	Compute the x	218 12.3	ent of cor 220 12.7	relation b 236 12	Detween x 225 12.2	and y. 220 12.7	227 12.1	228 12		4					
4B.	Using Green's theorem evaluate $\oint_C (3x-8y^2)dx + (4y-6xy)dy$, where C is the boundary of the region bounded by $x = 0$, $y = 0$ and $x + y = 1$.														
4C.	Solve the partial differential equation $U_{xx} + U_{xy} - 2U_{yy} = 0$ using the transformation $v = x + y$, $z = 2x - y$.														
5A.	Calculate me	Calculate mean and mode for the given distribution.] 4					
	Frequency	12	42	61	47	21		12	4						
5B.	Find the Fourier series expansion of $f(x) = x - x^2$ in $-\pi \le x \le \pi$ and hence prove that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots \dots \infty = \frac{\pi^2}{12}$. Given $f(x + 2\pi) = f(x)$.														
5C.	Suppose A = $x^2 z^2 i - 2y^2 z^2 j + xy^2 z k$. Find (i) $\Delta \times A$ and (ii) ΔA at the point P = (1, -1, 1).														