

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, I SEMESTER M.Sc (P/C/M/G)) END SEMESTER EXAMINATIONS, Nov/Dec 2017

Subject: Inorganic chemistry I [CHM 4101]

(REVISED CREDIT SYSTEM-2017)

Time: 3 Hours Date:16.11.2017 MAX. MARKS: 50

Note: (i) Answer all FIVE FULL questions

- (ii) Draw diagrams, and write equations wherever necessary
- 1. A. i) Explain the energy profiles during the formation of H₂ molecule and NaCl compound.
 - ii) Construct fully labelled Born-Haber cycle for the formation of the following compounds; CaO, CaF₂, Al₂O₃
 - B. Account for the following;
 - i) The solubility of silver halides in water decreases from AgF to AgI
 - ii) Reaction between ionic compounds in aqueous medium is instantaneous while that between organic compounds is slow
 - iii) BF₃ molecule is trigonal planar whereas the NF₃ molecule is trigonal pyramidal though both contain the same number of atoms
 - iv) Diamond does not conduct electricity, but graphite does (6+4)
- 2. A. i) Sketch sigma bonding orbitals that result from the combination of the following orbitals on separate atoms; p_z and p_z , p_z and p_z , p_z and p_z .
 - ii) Write the molecular orbital configurations and give the bond orders of NO⁺, CO & O₂⁻. Which of these species should be paramagnetic?
 - B. Give reasons for the following;
 - i) Table salt solution conducts electricity, but not the table sugar solution
 - ii) AlF3 is predominantly ionic while AlCl3 shows covalent character
 - iii) CHCl3 is polar while CCl4 is non-polar
 - iv) Melting points of ionic solids are higher than those of covalent molecular compounds. (6+4)

- 3. A. i) Describe the characteristic features and their suitability for gravimetric analysis of any two types of precipitates. Discuss the conditions for the formation of ionic bonding and hydrogen bonding.
 - ii) The gaseous KCl has the actual dipole moment of 3.336 x 10^{-29} Cm. The bond length is 2.67×10^{-8} cm. Calculate the dipole moment of KCl if it were completely ionic and also percent ionic character.
 - iii) Sample of iron in its ore by volumetric analysis gave the percentages 67.48, 67.37, 67.43, and 67.40. Calculate the average deviation and standard deviation.
 - B. i) What is nitrogen cycle? Explain the in-vitro nitrogen fixation methods.
 - ii) Why is the basic strength of alkaline earth metal hydroxides increase down the
 - iii) Give reason; Metallic hydrides are less dense than the corresponding metals.

(6+4)

- 4. A. i) What are pyroxene and amphiboles? Explain any two important applications of
 - ii) How do you prepare sulphur nitride and borazine? Explain the structural features of zeolites. IF7 and XeOF4.
 - B. Account for the following;
 - i) The absorption spectra of lanthanides are sharp lines unlike that of transition metals.
 - ii) 4f-5d transition is favorable in Ce 3+
 - iii) Lanthanides form fewer complexes with CN and CO ligands.
 - iv) Lower actinides have higher stable oxidation states.

(6+4)

- 5. A. i) Explain the structure of fullerenes, phosphonitrile trimer and pentaborane 9.
 - ii) What is lanthanide contraction? What are its consequences?
 - B. i) What are interhalogens and pseudohalogens? Give an example of each. Why are interhalogens more reactive than corresponding halogens?
 - ii) Compare the features of alkali and alkaline earth metals on the following
 - a) Cohesive energy b) Complex formation

(6+4)
