MANIPAL UNIVERSITY | Reg No | | | | |--------|--|--|--| ## DEPARTMENT OF SCIENCES III SEMESTER M.Sc (CHEMISTRY) END SEMESTER EXAMINATIONS, NOV/DEC 2017 SUBJECT: ADVANCED ORGANIC CHEMISTRY I [CHM-701] ## REVISED CREDIT SYSTEM Time: 3 Hours Date: MAX. MARKS: 50 ## **Instructions to Candidates:** - Answer ANY FIVE FULL questions. - Write chemical equations wherever necessary. | .A. | i) Describe the chemical properties and two important applications of metal-hydrides. ii) Give reason: Metal carbonyls undergo nucleophilic attack readily while they resist | 3 | |----------------|--|-------------| | 1B. | electrophilic attack.i) Explain the reactivity, structure and bonding of aluminum alkyls.ii) What product is obtained when excess ethylene is treated with triethylaluminium? | 3 | | 1C. | i) Predict the product in the following. (R=Alkyl) CH ₃ OCH ₂ CI /H ₃ O ⁺ CH ₂ =CH-COOR' /H ₃ O ⁺ RMgX /H ₃ O ⁺ O /H ₃ O ⁺ O /H ₃ O ⁺ | 2 | | | ii) Explain two synthetic applications of organosilicon compounds. | 2 | | 2A. | i) Give two synthetic methods for the following metal complexes. a. Metal-alkyl complexes b. Metal-alkene complexes ii) Explain the use of Metal-carbonyls in metallurgy | 3 | | 2B. | Describe two synthetic methods, structure and bonding of Fischer carbenes. How are they | 3 | | | different from Schrock carbenes? i) Explain the chemical properties and important synthetic applications of organolithium | 2 | | 2C. | compounds ii) Discuss the aromaticity and electrophilic substitution reactions of metal | 2 | | 3A
3B
3C | cyclopentadiene complexes Discuss industrial importance and laboratory applications of organometallic compounds Give Dotz reaction. Explain the mechanism i) Explain two general methods of preparation of main group organometallics with an | 3
3
2 | | | example ii) Reactivity of metal-arenes depends upon the functional groups on arenes. Explain. | 2 | | 4A
4B
4C | Define hydrocyanation. Explain its machanism | | |-------------------|---|------------------| | 5A.
5B.
5C. | What is hydrosilylation of olefins? Describe its mechanism. Determine the value of 'n', assuming that the 18 electron rule is obeyed by the following complexes; a) Ni(C _n H _n) ₂ b) Mn(CO) _n Cl ₂ c) [Mo ₂ (CO) _n] ² - i) Explain the following: a) Alkyne migratory insertion. b) Trans effect | 3 3 | | 6A.
6B. | ii) Describe 16 electron rule with suitable examples. Explain three applications of metal clusters in organic synthesis. i) Differentiate 1, 1 and 1, 2 migratory insertion reactions with suitable examples. ii) Explain dissociative and associative interchange mechanisms to explain ligand substitution reactions. i) Describe the mechanism of olefin isomerization in converting alcohol to aldehyde. ii) Explain in orbital terms why the maximum coordination number of the properties of the properties. | 2
3
2
1 | ********