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Note:   (i) Answer all FIVE FULL questions  

           (ii) All questions carry equal Marks ( 3 + 3 + 4) 

1A.  Let {En}, n = 1, 2, 3, … , be a sequence of countable sets, and put 
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Show that S is countable. 

1B. Define a compact set. If F is a closed subset and K is compact subset of a 

metric space X, show that FK is compact. 

 

1C. Show that the set of real numbers R has Archimedean property and hence 

show that there exists a rational number between any two real numbers. 

 

2A.  Show that a set E is open if and only if its complement is closed. 

2B. Define a Cauchy sequence and a complete metric space. In any metric 

space X, show that every convergent sequence is a Cauchy sequence. 

2C. Show that a mapping of a metric space X into a metric space Y is 

continuous on X if & only if f -1(V) is open in X for every open set V in Y. 

 

3A. Obtain the circle of convergence and radius of convergence for the                     

series 
2

2

0

( !)
 

(2 )!





 n

n

n
z

n
. 

3B. Suppose f is a continuous mapping of a compact metric space X into a 

metric space Y. Then show that f(X) is compact. 
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3C. If p > 0, then show that lim
1.n p

n



 

 

4A. If Pis a refinement of a partition P then show that L(P, f, )  L(P, f, ). 

4B. Let [a, b] be a given interval. Suppose that f is a bounded function on                       

[a, b] and  is a monotonically increasing function on [a, b]. Show that 
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4C. If f1R() and f2 R() on [a, b] then show that f1+ f2 R() and that 
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f + f  dα = f dα + f dα.    

5A. Suppose K is compact, and  

(i) {fn} is a sequence of continuous functions on K, 

(ii) {fn} converges pointwise to a continuous function f on K, 

(iii) fn(x) f n+1(x) for all x K, n = 1, 2, 3, ….. 

Then show that fnf uniformly on K. 

5B. State and prove Cauchy criterion for uniform convergence of a sequence 

of functions {fn } defined on a set E.  

5C. If X is a complete metric space, and if  is a contraction of X into X, then 

show that there exists one and only one x X such that (x) = x. 
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