

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc (Applied Mathematics and Computing) END SEMESTER EXAMINATIONS, November - 2017 Subject FORMAL LANGUAGE AND THEORY OF COMPUTATION [MAT 709.10]

(REVISED CREDIT SYSTEM)

Time:	3 Hours	Date:24/11/2017	MAX. MARKS: 50
Note:	(i) Answer any FIVE FULL	questions	
	(ii) All questions carry equal	marks $(3 + 3 + 4)$	

- 1A. Prove that for every NDFA, there exists a DFA which simulates the behavior of NDFA.
- 1B. Prove that for every CFG G, we can construct an equivalent grammar G' such that every symbol in $V'_N \cup \Sigma$ appears in some sentential form.
- 1C. Design a FA which checks whether a given decimal number is divisible by three.
- 2A Construct a minimum state automaton equivalent to the transition diagram given by

2B. Define Mealy and Moore machines.Name the given machine and construct an equivalent machine from the table below

	Next State		
	a=0	a=1	
State	State	State	O.P
\rightarrow q ₀	q ₃	\mathbf{q}_1	1
q ₁	\mathbf{q}_1	q_2	0
q ₂	q_2	q ₃	0
q ₃	q ₃	qo	0

2C. State and prove Pumping lemma.

- 3A. Consider the grammar G given by $S \rightarrow 0SA_12, S \rightarrow 012, 2A_1 \rightarrow A_12, 1A_1 \rightarrow 11$. Test whether (i)00112 $\epsilon L(G)$ and (ii)001122 $\in L(G)$.
- 3B. Prove $(1 + 00^*1) + (1 + 00^*1)(0 + 10^*1)^*(0 + 10^*1) = 0^*1(0 + 10^*1)^*1$.
- 3C. Is it possible for a regular grammar to be ambiguous?
- 4A. Convert the grammar $S \rightarrow AB, A \rightarrow BS \mid b, B \rightarrow SA \mid a$, into GNF.
- 4B. Show that the set of all non-palindromes over {a, b} is a context-free language.
- 4C. Verify by Comparison Method the automata are equivalent

- 5A. Show that $L = \{ww \mid w \in \{a, b\}^*\}$ is not regular.
- 5B. State and prove Kleene's Theorem.
- 5C. Design a Moore machine to generate 1's complement of the given binary number.
- 6A. Construct a regular expression corresponding to the following FA shown in figure using algebraic method.

- 6B. Let G be a CFG in CNF and T be a derivation tree in G. If the length of the longest path in T is less than or equal to K, then the yield of T is of length less than or equal to 2^{K-1} .
- 6C. Explain the model of pushdown automation.
