

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, M.Sc in Applied Mathematics & Computing III SEMESTER MAKEUP EXAMINATION, DECEMBER 2017

SUBJECT: GRAPH THEORY [MAT 707]

(REVISED CREDIT SYSTEM)

Tim	e: 3 Hours	MAX. MARKS: 50
Note:	(i) Answer any FIVE full questions	(ii) All questions carry equal marks (4+3+3).

- 1. (a) Show that a graph G with $p \ge 3$, is 2-connected if and only if any two vertices of G are connected by at least two internally disjoint paths.
 - (b) With usual notation, prove that $\alpha_0 + \beta_0 = \alpha_1 + \beta_1 = p$.
 - (c) Let G_1 be a (p_1, q_1) graph and G_2 be a (p_2, q_2) graph. Derive expressions for number of edges in $G_1 \times G_2$ and $G_1[G_2]$.
- (a) Show that, for any connected graph G, if *diam(G)* ≥ 3, then *diam(G)* ≤ 3. And hence show that diameter of a self-complementary graph is either 2 or 3.
 - (b) Show that the Ramsey number r(m, n) satisfies the in equality $r(n, n) \ge 2^{\frac{n}{2}}$.
 - (c) Show that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.
- 3. (a) Show that in a critical graph no vertex cut is a clique. Hence show that every critical graph is a block.
 - (b) Let $(S_1, S_2, ..., S_n)$ be any partition of the set of integers $\{1, 2, ..., r_n\}$ where $r_n = r(k_1, k_2, ..., k_n)$ with $k_i = 3$ for every *i*. Then show that, for every *i*, S_i contains three integers *x*, *y* and *z* satisfying x + y = z.
 - (c) Show that the maximum number of edges in graphs among all the *p* vertex graphs with no triangle is $\left[\frac{p^2}{4}\right]$.

- a) Find the minimum integer n such that in any party with n persons, either there are 3 persons who mutually know each other or 4 persons who mutually do not know each other.
 - b) With usual notation show that r(3,3) = 6.
 - c) Show that a graph is a line graph of a tree if and only if it is a connected block graph in which each cut vertex is on exactly two blocks.
- 5. a) Let G be a tree on p vertices and Q(G) be the (0,1,-1) incidence matrix of G. Then show that any submatrix of Q(G) of order (n-1) is nonsingular.
 - b) Show that a (p,q)graph G is a tree if and only if p = q + 1 and G is connected.
 - c) With usual notation show that $k(G) \le \lambda(G) \le \delta(G)$.
- 6. a) If G is a (p,q) graph such that $\delta(G) \ge \frac{p}{2}$ then show that G is Hamiltonian.
 - (b) For any (p,q) graph G with line graph L(G), show that A(L(G)) = B^TB 2I_q where B is the incidence matrix of G and A(L(G)) is the adjacency matrix of L(G).
 - (c) Show that if G is a tree on p vertices, then $\pi_k(G) = k(k-1)^{p-1}$.
