

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, M.Sc in Applied Mathematics & Computing III END SEMESTER EXAMINATION, NOVEMBER 2017

SUBJECT: GRAPH THEORY [MAT 707]

(REVISED CREDIT SYSTEM)

Time: 3 Hours	MAX. MARKS: 50
Note: (i) Answer any FIVE full question	ons (ii) All questions carry equal marks (4+3+3).

1. (a) With usual notation show that

(i)
$$2\sqrt{p} \le \chi + \bar{\chi} \le p + 1$$

(*ii*) $p \le \chi \bar{\chi} \le \left(\frac{p+1}{2}\right)^2$.

- (b) Show that a graph G is 2-connected if and only if between every two vertices of G there are vertex disjoint paths.
- (c) Show that if a regular connected graph G is of diameter 3 then \overline{G} is of diameter 2. Hence show that there does not exist a regular self-complementary graph of diameter 3.
- 2. (a) With usual notation, prove that $\alpha_0 + \beta_0 = \alpha_1 + \beta_1 = p$, for a non trivial connected (p, q) graph G.
 - (b) Let G be a connected (p,q) graph with p ≥ 3. Then show that ω(G) = q if and only if G has no triangles.
 - (c) Show that the Ramsey number R(m, n) satisfies the in equality $r(m, n) \le r(m 1, n) + r(m, n 1)$.
 - 3. (a) Let G be any graph and let u and v be vertices in G such that deg(u) + deg(v) ≥ r. Then show that G is Hamiltonian if and only if G + (u, v) is Hamiltonian.
 - (b) For any (p,q) graph G with line graph L(G), show that $A(L(G)) = B^T B - 2I_q$ where B is the incidence matrix of G and A(L(G)) is the adjacency matrix of L(G).

- (c) Show that the maximum number of edges in graphs among all the *p* vertex graphs with no triangle is $\left[\frac{p^2}{4}\right]$.
- 4. a) Show that rank of incidence matrix B is n-1, when G has n vertices.
 - b) Show that in a critical graph, no vertex cut is a clique and hence show that every critical graph is a block.
 - c) With the usual notation show that $\pi_k(G) = \pi_k(G e) \pi_k(G \cdot e)$.
- 5. a) If G is a k-critical graph then show that $\delta(G) \ge k 1$.
 - b) Let G be a bipartite graph with bipartition (X, Y). Then show that G contains a matching that saturates every vertex of X if and only if $|N(S)| \ge |S|$ for all

 $S \subseteq X$.

- c) Show that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.
- 6. a) Let G_1 be a (p_1, q_1) and G_2 be a (p_2, q_2) graphs. Then find number of vertices and edges in (i) $G_1 \times G_2$ (ii) $G_1[G_2]$.
 - b) Let G be a graph on n vertices. Columns $j_1, j_2, ..., j_k$ of Q(G) are linearly independent if and only if the corresponding edges of G induce an acyclic graph. Hence show that if G be a tree on n vertices, then any submatrix of Q(G) of order n-1 is nonsingular.
 - c) Show that every planar graph is five colorable.
