

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, M. Sc. (P/C/M/G)I SEMESTER END SEMESTER EXAMINATIONS NOVEMBER 2017

Subject: Quantum Mechanics I (PHY-4105) (REVISED CREDIT SYSTEM)

Time: 3 Hours	Date: November 2017	MAX. MARKS: 50							
Note: (i) Answer all the questions. (ii) Answer the questions to the point.									
()	ac's bra - ket notations.	[5]							
(a) $\frac{d}{dt} \int_{-\infty}^{\infty} \psi^*(x,t) \psi$	nensional bound particle, s $(x,t) dx = 0$, ψ need not be	a stationary state.							
. ,	e is in a stationary state a n in a stationary state.								

- 2. (i) Obtain expressions of energy eigenvalues and eigenfunctions for a particle in an infinite deep potential well. [5]
- (ii) An electron is in the ground state of a one-dimensional infinite square well with $a=10^{-10}$ m. Compute the force that the electron exerts on the wall during an impact on either wall. [5]
- 3. (i) Establish the Schroedinger equation for a SHO and reduce it into the Hermite equation. [5]
- (ii) Calculate the value of $<1/r>> for the hydrogen atom in the ground state. Use the result to calculate the average kinetic energy <math>< p^2/2m >$ in the ground state. [5]
- 4. Write the Schroedinger equation for spherically symmetric potentials. Break it into r, θ, ϕ dependent equations using separation of variables technique. [10]
- 5. (i) Describe how symmetric and antisymmetric wavefunctions are constructed for a system n identical particles? [5] (ii) What is the ground state energy and wavefunction for two iden-

tical particles in an infinite deep potential of width a, if the two

particles are (a) bosons, and (b) fermions?

[5]

Useful formulae:

$$\nabla^{2}t = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial t}{\partial r}\right) + \frac{1}{r^{2}sin\theta}\frac{\partial}{\partial \theta}\left(sin\theta\frac{\partial t}{\partial \theta}\right) + \frac{1}{r^{2}sin^{2}\theta}\frac{\partial^{2}t}{\partial \phi^{2}}$$

$$\int_{0}^{\infty}exp(-a^{2}x^{2})cos(bx)\,dx = \frac{\sqrt{\pi}}{2a}exp\left(-\frac{b^{2}}{4a^{2}}\right)$$

$$\int_{0}^{\infty}x^{n}exp(-ax)\,dx = \frac{n!}{a^{n+1}}, \quad \mathbf{where} \quad n \geq 0, \quad a > 0$$

For hydrogen atom

$$\psi_{100} = \sqrt{\frac{1}{\pi a_0^3}} e^{-r/a_0}$$

where a_0 is the Bohr radius.