

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc. (P/C/M/G)) END SEMESTER EXAMINATIONS, Nov/Dec 2017

SUBJECT: NUCLEAR PHYSICS-I (PHY 707.5)

(REVISED CREDIT SYSTEM)

Time:	3 Hours	Date:	MAX. MARKS: 50
Note:	(i) Answer any FI	VE FULL questions	
	(ii) Any missing dat	a may suitably be assumed.	
1.	(a) With the help of excited state of a micircuit.	f necessary block diagrams, exp ucleus can be determined using	lain how the mean life time of the 'Time to Amplitude converter'
	(b) Explain the sele electric quadrupole the initial sate.	ection rules for gamma emission and magnetic radiation parity of	(or absorption). Show that for of the final state is same as that of (6+4=10)
2.	(a) Derive an expre charged particle wi	ssion for 'Stopping Power' in the matter.	ne case of interaction of a heavy
	(b) If the minimum what is the waveler	energy imparted to an electron agth of the incident photon?	in Compton scattering is 45 keV, (6+4=10)
3.	(a) Explain the pri	nciple and operation of scintilla	tion detector.
	(b) Explain how m with the help of a	nass attenuation coefficient of a scintillation spectrometer.	given material can be determined (5+5=10)
4.	(a) What are solid	state detectors? Describe the w	orking of a surface barrier detector.
	(b) What percentages whose linear absorbatic aluminium if $\mu = 0$	ge of incident X-ray radiation p rption coefficient is 0.07mm ⁻¹ ? .07mm ⁻¹	asses through 5.0mm of material Find the half value thickness of (6+4=10).
5.	(a) Write a note on	Fermi-Kurie plot.(b) What is 'l	Energy Straggling' and 'Range
6.	Straggling'? (C) V (a) Write a note or	What is 'Bragg Kleeman Rule'? 1 Solid State Nuclear Track Det	(4+3+3=10) ectors.
	(b) Alpha particle conditions. The ex	s and deuterons are accelerated tracted beam of particles is pass	in a cyclotron under identical sed through an absorber. Show that
	the expected range	e of deuterons is twice that of a	' particles. (6+4=10).

General Data:

- (i) Avogadro's Number = $6.023 \times 10^{23} (\text{g-mole})^{-1}$
- (ii) Planck's Constant (h) $= 6.63 \times 10^{-34} \text{ Js}$
- (iii) Boltzmann's Constant (k) = $1.38 \times 10^{-23} \text{JK}^{-1}$
- (iv) Permittivity of free space $(\varepsilon_0) = 8.85 \text{ x } 10^{-12} \text{Fm}^{-1}$
- (v) Charge on an electron (e) $=1.6 \times 10^{-19}$ C
- (vi) Electron mass = 9.11×10^{-31} kg= 5.4858×10^{-4} u = 0.511MeV / c²
- (vii) Proton mass = $1.6726 \text{ x } 10^{-27} \text{kg} = 1.0072765 \text{ u} = 938.280 \text{ MeV} / c^2$
- (viii) Neutron mass = $1.6749 \text{ x } 10^{-27} \text{kg} = 1.008665 \text{ u} = 939.573 \text{ MeV} / c^2$
- (ix) 1 year = $3.156 \times 10^7 \text{ s}$
- (x) Speed of light in vacuum (c) = $3 \times 10^8 \text{ ms}^{-1}$
- (Xi) 1 unified mass unit (u) = 931.5 MeV / c^2

##