Reg. No.									
----------	--	--	--	--	--	--	--	--	--

I SEMESTER M.TECH. (AUTOMOBILE ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER- 2017

SUBJECT: COMPUTATIONAL METHODS [MAT 5103]

REVISED CREDIT SYSTEM

Time: 3 Hours (28/11/2017) MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

1A.	$4x_1 + 3x_2 = 24$ Use SOR method with $\omega = 1.25$ to solve $3x_1 + 4x_2 - x_3 = 30$. $-x_2 + 4x_3 = -24$ Carryout 3 iterations using $X^{(0)} = (1\ 1\ 1)^T$ and accurate to 4 decimal places.	3 Marks
1B.	Solve by Newton-Raphson method: $2x^2 + 3xy + y^2 = 3, 4x^2 + 2xy + y^2 = 30.$ Start with the initial approximation $x_0 = -3, \ y_0 = 2.$	3 Marks
1C.	Solve the system of equations using Thomas method: $2x_1 - x_2 = 6$ $-x_1 + 3x_2 - 2x_3 = 1$ $-2x_2 + 4x_3 - 3x_4 = -2$ $-3x_3 + 5x_4 = 1$	4 Marks
2A.	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$; find $y(0.06)$ with $h = 0.02$ by Euler's modified method.	3 Marks
2B.	Evaluate $y(0.1)$ by Taylor's series method, given $y' = xy + 1$, $y(0) = 1$.	3 Marks

2C.	Solve the differential equations $\frac{dy}{dx} = 1 + xz$, $\frac{dz}{dx} = -xy$ for $x = 0.3$ using R K method. Take the initial values are $x = 0$, $y = 0$, $z = 1$.	4 Marks				
3A.	Solve $y'' + xy = 1$, $y(0) = 0$, $y'(1) = 1$ with $h = 0.5$ by finite difference method.					
3B.	Solve $u_{tt} = u_{xx}$, $0 < x < 1$, $t > 0$, $u(x,0) = u_t(x,0) = 0$, $u(0, t) = 0$, $u(1, t) = 100 \sin \pi t$. Compute u for 4-time step by with $h = 1/4$.	3 Marks				
3C.	With $h = 1$ and $u = 0$ on the boundary, solve the Poisson's equation $u_{xx} + u_{yy} = -10(x^2 + y^2 + 10), \ 0 < x < 3, \ 0 < y < 3.$	4 Marks				
4A.	Use Galerkin's method to solve the boundary value problem $y'' = 3x + 4y$, $0 < x < 1$, $y(0) = 0$, $y(1) = 1$.	3 Marks				
4B.	Apply Rayleigh-Ritz method to solve $y''+y+x=0$ $(0 \le x \le 1)$, $y(0)=y(1)=0$. (Use one parameter approximate solution).	3 Marks				
4C.	Solve the heat equation $u_t = u_{xx}$ by Bendre-Schmidt method, subject to the conditions $u(0,t) = u(1,t) = 0$ and $u(x,0) = \begin{cases} 2x & \text{for } 0 \le x \le 1/2 \\ 2(1-x) & \text{for } 1/2 \le x \le 1 \end{cases}$. Take $h = 1/4$ and $k = 1/96$, compute u for 4-time steps.	4 Marks				
5A.	Derive mathematical model for population growth and effects of immigration and emigration on population size.	3 Marks				
5B.	Discuss the 12 point procedure and classification of mathematical modelling.	3 Marks				
5C.	Solve $u_t = u_{xx} + u_{yy}$ satisfying the initial condition: $u(x, y, 0) = \sin \pi x \sin \pi y$, $0 \le x, y \le 1$ and boundary conditions $u = 0$ at $x = 0$ and $x = 1$ for $t > 0$. Obtain the solution upto two time levels with $h = 1/3$, $\alpha = 1/8$.	4 Marks				