I SEMESTER M.TECH. (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, NOV/DEC 2017

SUBJECT: BIOPROCESS ENGINEERING [BIO 5121]

REVISED CREDIT SYSTEM (16/11/2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** questions.
- Missing data may be suitable assumed.

1A.	What could happen if you substituted a tyrosine for a cysteine in the active site? What might happen if the substitution occurred elsewhere?	3M
1B.	What are mutagenic agents and does every gene mutation cause alteration in the protein the gene normally codifies?	2M
1C.	You wish to produce a high value protein using recombinant DNA technology. Would you try to develop a chemical defined medium or a complex medium? Why?	2M
1D	List the essential criteria of the culture used for inoculation of productive fermentation medium.	3M
2A.	A medium containing a vitamin is to be sterilized. Assume that the number of spores initially present is $10^6/L$. The values of the pre-Arrhenius constant and E_d for the spores are 1 x 10^{36} min ⁻¹ and 65 kcal/mol respectively. For the inactivation of the vitamin, the values are 1 x 10^4 min ⁻¹ and 10 kcal/mol respectively. The initial concentration of vitamin is 30 mg/L. compare the amount of active vitamin in the sterilized medium for 10 L and 10000 L fermenter when both are sterilized at 121° C where we require in both cases that the probability of an unsuccessful fermentation be 0.001. Ignore the effects of the heat up and cool down periods.	4M
2B	If a batch sterilization process carried out in a 10,000 dm ³ and 1,00,000 dm ³ vessel with a medium containing 10 ⁶ organisms cm ⁻³ requiring a probability of contamination of 1 in 1000, what would be the Del factor in both the cases? Give the significance of Del Factor.	2M
2C	Contrast depth and absolute filters. With a neat labelled diagram explain the sterilization of animal cell culture medium.	4M
3A	Lipase is being investigated as an additive to laundry detergent for removal of stains from fabric. The general reaction is: Fats→ Fatty acids + Glycerol. The value of K _m is 5 mM. At 60°C, lipase is subjected to deactivation with a half-life of 8 min. Fat hydrolysis is carried out in a well - mixed batch reactor which stimulates a top loading washing machine. The initial fat concentration is 45 gmol/m³. At the beginning of the reaction the rate of hydrolysis is 0.07 mmol/s. How long does it take for the enzyme to	4M

BIO 5121 Page 1 of 2

	hydrolyze 80 % of the fat present?	
3B	List the advantages and disadvantages of immobilization of enzyme. Describe in brief the matrix entrapment method of immobilization.	4M
3C	Define the following: a. Holoenzyme b. Cofactor c. Cryptic growth d. Diauxic growth	2M
4A	Develop an unstructured-non segregated growth model for bacterial culture grown in batch reactor in terms of biomass and substrate concentrations and list the assumptions made.	5M
4B	With a neat labelled diagram explain the method for measuring cell number and cell size distribution with a particle counter using the electrical resistance.	3M
4C	Illustrate how the hydrogen ion concentration affects the microbial growth kinetics.	2M
5A	 Aerobic degradation of an organic compound by a mixed culture of organisms in waste water can be represented by the following reaction. C₃H₆O₃ + a O₂ + b NH₃ c C₅H₇NO₂ + d H₂O + e CO₂ a. Determine a, b, c, d and e, if Yx/s = 0.4 g x/g s. b. Determine the yield coefficients Y_{x/O2} and Y_{x/NH3}. c. Determine the degree of reductions for the substrate, bacteria, and RQ for the organism 	5M
5B	The chemical reaction equation for conversion of ethanol to acetic acid is $C_2H_6O + a O_2 + NH_3 c CH_{1.8}O_{0.5}N_{0.2} + d CO_2 + e H_2O + f C_2H_4O_2$. Acetic acid is produced from ethanol during growth of <i>Acetobacter aceti</i> which has the composition $CH_{1.8}O_{0.5}N_{0.2}$. Biomass yield from substrate is 0.14 g/g; $Y_{ps} = 0.92$ g/g. NH_3 is used ad N_2 source. How does growth in this culture affect oxygen demand for acetic acid production?	5M

BIO 5121 Page 2 of 2