

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

I SEMESTER M.TECH. (CHEMICAL & BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, NOV/DEC 2017

SUBJECT: MATHEMATICAL & NUMERICAL TECHNIQUES FOR CHEMICAL AND BIOTECHNOLOGY ENGINEERING [MAT- 5102] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL FIVE questions.
- ✤ Missing data may be suitable assumed.

	Using Jacobi's method, find all the eigen values and the corresponding eigen	
1A.	vectors of the matrix A = $\begin{bmatrix} 2 & \sqrt{2} & 4 \\ \sqrt{2} & 6 & \sqrt{2} \\ 4 & \sqrt{2} & 2 \end{bmatrix}$	4
1B.	Find a real root of the equation $xe^{x}-1 = 0$ using Newton- Raphson method. Take $x_0 = 1$. Carryout four iterations.	3
1C.	Solve by Taylor series method, the equation $\frac{dy}{dx} = \log(xy)$ for y(1.1) and y(1.2), given y(1) = 2.	3
2A.	Consider the boundary value problem $y'' + (1+x^2)y = -1$, $y(\pm 1) = 0$. Determine the coefficients of the approximate solution $w(x) = a_1(1-x^2) + a_2x^2(1-x^2)$ by using Galerkin method.	
2B.	Solve the following system of equations using Gauss-Seidel method. 4x+y-z = 3, $2x+7y+z = 19$, $x - 3y + 12z = 31$. Carryout three iterations.	3
2C.	Find the seventh term and general term of the series 3, 9, 20, 38, 65,using interpolation.	3
3A.	Using Runge-Kutta method of order four find $y(0.3)$ and $z(0.3)$ from	4

Reg.	No.	
------	-----	--

The second second	MANIPAL INSTITUTE OF TECHNOLOG	Y		
	$:\frac{dy}{dx}=1+xz, \ \frac{dz}{dx}=-xy \text{ with } y(0)=0 \text{ and } z(0)=1$			
3B.	Find the largest eigen value and the corresponding eigen vector of $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ by power method taking $X^{(0)} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$. Carryout four four iterations	3		
3C	Find the quadratic least square approximation to $f(x) = e^x$, $x \in [-1, 1]$ with respect to the weight function $w(x) = 1$.			
4A.	Solve $y'' + (1+x)y' - y = 0$, $y(0) = y'(0)$, $y(1) + y'(1) = 1$, $h = \frac{1}{2}$	4		
4B.	Prove that $\int_{0}^{\infty} e^{-x} L_n(x) L_m(x) dx = \begin{cases} 0, \ m \neq n \\ 1, \ m = n \end{cases}$	3		
4C.	Fit the exponential curve $y = ae^{bx}$ to the following data x 2 4 6 8 10 y 4.077 11.084 30.128 81.897 222.62	3		
5A.	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x < a \\ 0, x > a \end{cases}$ and hence deduce that $\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3}\right) dt = \frac{\pi}{4}.$			
5B.	Solve: 2x+3y+z=9; x+2y+3z=6; 3x+y+2z=8 by LU decomposition method.	3		
5C.	Solve: $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$, $0 < x < 5$, $t > 0$. $u(x,0) = x^2(5-x)$, $\frac{\partial u(x,0)}{\partial t} = 0$, u(0, t) = 0 = u(5, t). $h = 1$. Compute $u(x,t)$ for 4 time steps.	3		