Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

I SEMESTER M.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: Advanced Process Dynamics & Control [CHE5104]

REVISED CREDIT SYSTEM

	Time: 3 Hours MAX. MARKS: 50	
	Instructions to Candidates:	
	Answer ALL questions.	
	 Missing data may be suitably assumed. 	
1A.	Distinguish between Feedback control and Feedforward control schemes with suitable examples.	4
1B.	Design a controller incorporating a smith predictor for a time delay process. Discuss the merits and de-merits of the same.	4
1C	Discuss the various soft sensing methods existing in the literature.	2
2A.	Explain the detailed procedure of designing a de-coupler for $2x^2$ system. You are expected to show the block diagram of $2x^2$ system with decoupler.	6
28.	The dynamic model of Process is as follows, $M_{1} \frac{d^{2}x_{1}}{dt^{2}} + D \frac{dx_{1}}{dt} + K(x_{1} - x_{2}) = 0$ $M_{2} \frac{d^{2}x_{2}}{dt^{2}} + K(x_{2} - x_{1}) = f(t)$ Obtain the state space model of the form, $\dot{x} = Ax(k) + Bu(k)$ $y = Cx(k)$	4
3A	The characteristic equation for a certain closed loop digital control system is given as: $1+0.3z^{-1}-0.2z^{-2}-0.2z^{-3}+0.4z^{-4}=0$ Using Jury's method determine whether this system is stable or not.	04
3B.	Consider moving average (MA) process	04
	$y(k) = H(q)e(k);$ $H(q) = 1 - 1.1q^{-1} + 0.3q^{-2}$	
	Compute $H^{-1}(q)$ as an infinite expansion by long division and develop an auto-regressive	
	model of the form $e(k) = H^{-1}(q)y(k)$. Show that this model facilitates estimation of noise $e(k)$ based on current and past measurements of $y(k)$	
3C	Discuss the different condition for stability of linear discrete time state space model.	02

4A	Derive the parameter estimation problem for output error model structure given below. You are expected to demonstrate all the steps.	04
	$\mathbf{x}(k) = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 + a_1 q^{-1} + a_2 q^{-2}} q^{-1} \mathbf{u}(k)$	
	$\mathbf{y}(k) = \mathbf{x}(k) + \mathbf{v}(k)$	
4B	Consider the following system	06
	$x(k+1) = \begin{bmatrix} 1/4 & 1/4 \\ -1/4 & 0 \end{bmatrix} x(k) + \begin{bmatrix} -2 \\ 1 \end{bmatrix} u(k) + w(k); \ y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) + v(k)$	
	It is desired to develop a state feed feedback control law of the form $u(k) = -Gx(k)$.	
	Find the matrix 'G' such that the poles of $(\Phi - \Gamma { m K})$ are placed at $\lambda = -0.25 \pm j0.25$	
5A.	Consider fourth order system as	04
	$y(k) = G(q)u(k) = \frac{b_1q^3 + b_2q^2 + b_3q + b_4}{q^4 + a_1q^3 + a_2q^2 + a_3q + a_4},$	
	Obtain the state space realization (controllable canonical) of the form	
	$x(k+1) = \Phi x(k) + \Gamma u(k)$	
	y(k) = Cx(k)	
	Such that, $C[qI - \Phi]^{-1} = G(q)$.	
5B	Luenberger state estimator is to be designed by considering the plant as	04
	$x(k+1) = \Phi x(k) + \Gamma u(k); \qquad y(k) = Cx(k)$	
	Develop an error dynamics and discuss the merits and demits of this observer.	
5C	Discuss the working principle of model predictive control strategy.	02
	****	1
