

I SEMESTER M.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATION, NOV/DEC 2017

SUBJECT: ADVANCED REACTION ENGINEERING [CHE 5103] REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** questions.
- ❖ Missing data may be suitable assumed.

1.	At present we have 90% conversion of a liquid feed (n=1, C_{A0} = 10 mol/lit) to a PFR with recycle of product (R=3). If we shut off the recycle stream, how much will this lower the processing rate of our feed to the same 90% conversion?	10
2A.	Discuss heat effects on effectiveness factor in a gas solid catalytic reaction.	5
2B.	The homogeneous gas decomposition of phosphine $4 \text{ PH}_3(g) \rightarrow P_4(g) + 6H_2$ proceeds at 649°C with the first order rate $-\text{rpH}_3 = (10/\text{hr}) \text{ CpH}_3$ What size of plug flow reactor operating at 649°C and 460kPa can produce 80% conversion of a feed consisting of 40 mol of pure phosphine per hour?	5
3.	Derive an expression for overall rate for a gas liquid slow reaction with pseudo first order kinetics.	10
4.	Derive performance equation for semi batch reactor with reaction A+B->R -r _A = k' C _A	10
5A	The gas phase reaction $1/2 N_2 + 3/2 H_2 -> NH_3$ Is to be carried out isothermally. Molar feed is $50\%H_2$, $50\% N_2$ at a pressure of 16.4 atm and 227^0 C. For a H_2 conversion of 60% construct a complete stoichiometric table.	5
5B.	Derive a performance equation for gas- liquid reaction in a countercurrent spray tower.	5