Reg. No.

I SEMESTER M.TECH. (CHEMICAL ENGINEERING)

ENDSEM EXAMINATIONS, NOV 2017

SUBJECT: ADVANCED THERMODYNAMICS-I [CHE 5101]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	Determine the molar volume of liquid ammonia using RK equation of state at 321.55 K and $1.95 \times 10^6 Pa$. The values of RK constants $a = 0.48383 Pa(m^3/mol)^2$, $b = 2.5902 \times 10^{-5} m^3/mol$.				
1B.	B. Calculate the pressure developed when a tank of 0.9 m ³ is filled with 150 kg of the component and the tank is exposed to the surroundings where the temperature is 573 K. The properties of the component are mol.wt. 92.14 g/mol, Tc= 594.0K, Pc= $42.15 \times 10^5 \ N/m^2$, w=0.263. (Use two parameter and three parameter compressibility factor Pitzer's correlation).				
2A.	Using the concept of partial molar property, derive the expressions for partial molar volume of the components in a binary solution.				
2B.	Derive the different forms of Gibbs-Duhem equation.				
3A.	Prove that if Henry's law is obeyed by component 1 in a binary solution over certain concentration range, Lewis-Randall rule (Raoult's law) will be obeyed by component 2 over the same concentration range.				
3B.	With the help of suitable diagram, discuss the effect of pressure on T-x-y diagram.	3.5			
3C.	The system n-pentane(1) – n-hexane(2) – n-heptane(3) forms an ideal solution. Determine the composition of the liquid which is in equilibrium with a vapour of composition $y_1 = 0.45$, $y_2 = 0.3$ and $y_3 = 0.25$ at 70°C. The vapour pressure of the components are 2129.57 Torr, 785.82 Torr and 303.99 Torr for n-pentane(1), n-hexane(2) and n-heptane(3) respectively.	03			

4A.	Chloroform(1)- methanol(2) forms an azeotrope at 760 Torr, 53.5°C and x_1 =0.65. Using the van Laar model draw the P-x-y diagram (5 set of data) at 53.5°C. What type of azeotrope is this?					
	The Antoine constants are given below					
		А	В	С		
	Chloroform(1)	6.95465	1170.966	226.232		
	Methanol(2)	8.08097	1582.271	239.726		
4B.	A vapour mixture of 20 mole percent methane, 30 mole percent ethane and 50 mole percent propane is available at 30°C and 800 kPa. Making use of the K factors determine the pressure at which condensation begins if the mixture is isothermally compressed. Also estimate the composition of the first drop of liquid that forms.					
5A.	The equilibrium ethanol accordi $C_2H_4 + H_2O$ is 6.8×10^{-2} a heat data as follows	a constant at 420 K for ng to reaction → C_2H_5OH nd standard heat of rea ows	the vapour phase hydrights the vapour phase hydrights the vapour phase hydrogen by the section at 298 K is -4.	dration of ethylene to 5.95 \times 10 ³ J. The specific	06	
		C _p ,J/mol K				
	Ethylene	11.886 + 120.12 >	$< 10^{-3}T - 36.649 >$	$< 10^{-6}T^2$		
	Water $30.475 + 9.652 \times 10^{-3}T + 1.189 \times 10^{-6}T^2$					
	Ethanol	29.358 + 166.9 ×	$10^{-3}T - 50.09 \times 10^{-3}$	$10^{-6}T^2$		
	Formulate general relationships for estimating the equilibrium constant and standard free energy change as functions of temperature.					
5B.	Ammonia synthesis reaction is represented by					
	$N_2 + 3H_2 \rightarrow 2NH_3$					
	The reactant stream consists of 1 mol N_2 , 3 mol H_2 and 2 mol argon. The temperatu and pressure of the reaction are 675 K and $20 \times 10^5 N/m^2$. The equilibrium constant for the reaction is 2×10^{-4} . Determine the conversion of nitrogen to ammonia.					