

MANIPAL INSTITUTE OF TECHNOLOGY

I SEMESTER M.TECH. (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: ADVANCED MECHANICS OF SOLIDS [CIE 5151]

REVISED CREDIT SYSTEM (16/11/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

uent Institution of Manipal University

✤ Missing data may be suitable assumed.

	The general displacement fields in a body in Cartesian coordinate system is given by	4
1A.	$u = 3x^2y^2z + y^2z$; $v = 3xyz + xy$; $w = 4xyz^2 + 5xy^2$. Find strain tensor and the linear	
	strain at the point $(2, -1, 3)$ in the direction $(0.6, 0.53, -0.6)$.	
1B.	Derive the Saint Venant's equations of compatibility for a given displacement field in	6
	3D.	
	State of stress at a point in a strained body is	
2.	[25.65 46.88 22.06]	10
	given: $\sigma = \begin{vmatrix} 46.88 & 54.05 & -12.4 \end{vmatrix}$ <i>MPa</i>	
	22.06 -12.4 102.66	
	Determine the three principal stresses and associated principal planes.	
3A.	Given $\phi = ax^2 - bxy - cy^2$. Check whether this function can be used as stress function	5
	for zero body forces and find out the problem represented.	
3B.	For a thin rectangular plate subjected to uniformly distributed load, obtain the	5
	expressions for shear forces in terms of vertical displacement 'w'.	
4A.	Derive the stress compatibility conditions for plane strain condition (2D).	6
4B.	Using Navier's solution, for a simply supported plate subjected to strip loading 'qo'	4
	(parallel to X-axis) at distance 'p' from X-axis, obtain the expressions for deflection.	
5A.	An annular circular plate simply supported at outer edges is subjected to edge	5
	moments M_1 at the inner edge (r = b) & M_2 at outer edge (r = a). Obtain the	
	expressions for deflection and moment.	
5B.	Using membrane theory of cylindrical shells, obtain the equilibrium equations.	5