

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

# I SEMESTER M.TECH. (ELECTRICAL & ELECTRONICS ENGINEERING)

### **MAKEUP EXAMINATIONS, JANUARY 2018**

## SUBJECT: Computational methods & Applied Linear Algebra [MAT 5109]

#### REVISED CREDIT SYSTEM (02/01/2018)

Time: 3 Hours

MAX. MARKS: 50

#### Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be assumed suitably.

| 1A. | Solve the differential equations $\frac{dy}{dx} = 1 + xz$ ; $\frac{dz}{dx} = -xy$ for x=0.1 using fourth                                              | 4 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | order Runge Kutta method. Initial values are x=0, y=0 and z=1.                                                                                        |   |
| 1B. | Solve the boundary value problem using finite difference method $y''+xy=1$ , $y(0)=0$ , $y'(1)=1$ , $h=0.5$ .                                         | 3 |
| 1C. | The following data gives the velocity of a particle for 8 seconds at an interval                                                                      | 3 |
|     | Time 0 2 4 6 8                                                                                                                                        |   |
|     | Velocity 0 172 1304 4356 10288                                                                                                                        |   |
| 2A. | Solve the LPP by simplex method.                                                                                                                      |   |
|     | Maximize $Z = 10x_1 + x_2 + 2x_3$ subject to the constraints                                                                                          | 4 |
|     | $x_1 + x_2 - 2x_3 \le 10$ , $4x_1 + x_2 + x_3 \le 20$ , $x_1 \ge 0$ , $x_2 \ge 0$ , $x_3 \ge 0$ .                                                     |   |
| 2B. | Show that any set of n linearly independent vectors forms a basis for a vector space V over a field F.                                                | 3 |
| 2C. | Solve the system of equations by Gauss elimination method $2x+y+z-2w=-10$ , $4x+2z+w=8$ , $3x+2y+2z=7$ , $x+3y+2z-w=-5$                               | 3 |
| 3A. | Compute the value of $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ using Simpson's 3/8 th rule by                                                     | 4 |
|     | taking n=6.                                                                                                                                           |   |
| 3B. | Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence find its                                   | 3 |
|     | inverse                                                                                                                                               |   |
| 3C. | Find the largest eigenvalue and its corresponding eigenvector of a matrix $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$                                   |   |
|     | $A = \begin{vmatrix} 1 & 5 & -1 \\ 3 & 2 & 4 \end{vmatrix}$ using Power method. Take $X_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial | 3 |
|     | $\begin{bmatrix} -1 & 4 & 10 \end{bmatrix}$                                                                                                           |   |
|     | eigen vector. Carry out 3 iterations.                                                                                                                 |   |



# MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

|     | RED BY A Constituent Institution of Manipal University                                                                                             |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4A. | Find the optimal solution of the transportation problem using MODI method.                                                                         |   |
|     | A  B  C  D                                                                                                                                         |   |
|     | I 21 16 25 13 11                                                                                                                                   | 5 |
|     | Source II 17 18 14 23 13 Availability                                                                                                              |   |
|     | <i>III</i> 32 27 18 41 19                                                                                                                          |   |
|     | Requirement 6 10 12 41                                                                                                                             |   |
| 4B. | Given $\frac{dy}{dx} = xy + y^2$ , $y(0) = 1$ , $y(0.1) = 1.1169$ , $y(0.2) = 1.2773$ , $y(0.3) = 1.504$ .                                         | 5 |
|     | Evaluate y(0.4) by Milne's Predictor corrector method.                                                                                             |   |
| 5A. | Use Gram- Schmidth orthogonalization process to compute the orthonormal basis from the basis $S = \{(1, 1, 1), (-1, 0, -1), (-1, 2, 3)\}$ of $R^3$ | 4 |
| 5B. | Solve $U \pm U = -81 \text{ m}$ , $0 \le y \le 1$ , $0 \le y \le 1$ , taking $h = 1/3$ . The boundary                                              |   |
|     | Solve $O_{xx} + O_{yy} = -01xy$ , $0 < x < 1$ , $0 < y < 1$ , taking $n = 1/5$ . The boundary                                                      | 3 |
|     | conditions are $u(0, y) = u(x, 0) = 0$ , $u(1, y) = u(x, 1) = 100$ .                                                                               |   |
| 5C. | Use Taylor's series method to solve $\frac{dy}{dx} = x^2 y - 1$ at x=0.1. The initial                                                              | 3 |
|     | dx                                                                                                                                                 |   |
|     | condition at x=0 is y=1.                                                                                                                           |   |