Reg. No.

MANIPAL 3

(A constituent Institution of MAHE, Manipal)

I SEMESTER M.TECH (ESM/PED) MAKE UP EXAMINATIONS, JAN 2018 SUBJECT: INSTRUMENTATION IN ELECTRICAL SYSTEMS [ELE 5105]

REVISED CREDIT SYSTEM

Time	e: 3 Hours	Date: 4 th January 2018	Max. Marks: 50
Inst	 cuctions to Candidates: Answer ALL the questions Missing data may be suitable All passive components mutual 		table provided
1A.		ith a neat diagram, derive and prove that the o dependent on the product of its voltage s ssure.	• •
1B.	certain value. Show that for thi parts of the meter can be expl flow in m^3/s .	ter was found to be constant for rates of flow s condition the loss of head due to friction in th ressed as KQ ² m where K is a constant and Q et and throat diameter of the Venturimeter are	e convergent is the rate of
1C.	0.05m respectively and the dis With suitable diagrams, derive		(03) n coefficients of an infinite
		bendent on the reflection loss as well as absorption of the reflection loss as well as absorption of a sheet of silver whose thickness is $0^7 \text{ U}/m$ at 10^8 Hz .	
2A.	conditioning circuit using OPA	ons of signal conditioning circuit. Design an MP to be interfaced with AD590 IC temperatu 10V at 100°C. The rate of conversion of AD59	re transducer
2B.	o 1	the principle of magnetic isolation using a phase sensitive modulators as well as ph plation technique.	
2C.	mathematical model. From th (band pass/band reject/low frequency and comment whet signal conditioning unit that	as shown in Fig. Q 2C . With detailed step e analysis, comment on the type of the filter pass/high pass) employed. Also determine ther the filter architecture is suitable for emp processes transduced signals of a structure in frequency range of 0.01-40 Hz).	architecture the cutoff ployment in a
	seismic excitations. (Excitation	n frequency range of 0.01-40 Hz).	

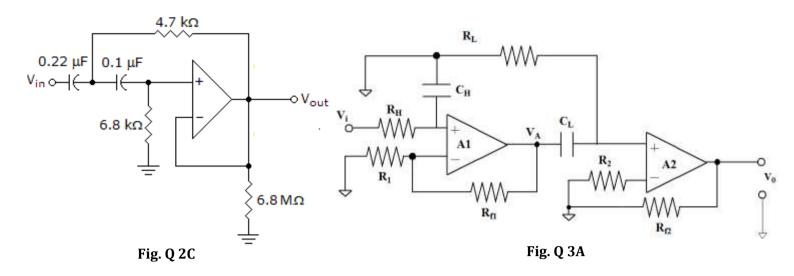
3A. Derive the mathematical model of a band pass active filter depicted in **Fig. Q 3A.** Also, calculate its lower and upper cut off frequencies along with the voltage amplification factor if the values of the passive components are given below:

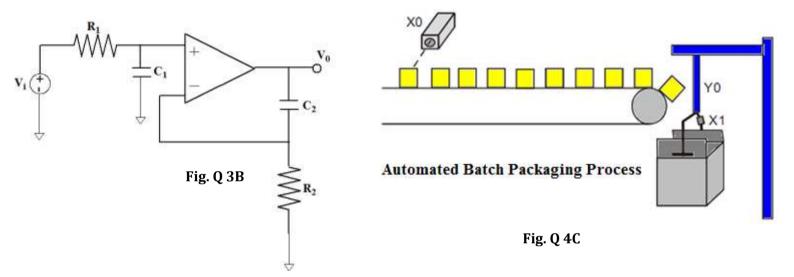
$$R_1 = R_2 = 10K\Omega; R_{f1} = R_{f2} = 100K\Omega; R_L = R_H = 10K\Omega; C_L = 1\mu F; C_H = 10\mu F$$
(03)

- **3B.** If $R_1C_1 = R_2C_2$ in the circuit shown in **Fig. Q 3B**, derive its mathematical model. Further, **(03)** specify the component values to obtain a gain of 20dB at 100Hz.
- **3C.** With neat diagram, describe how the linear motion of the core of an inductive transducer is transduced to electrical signals.

The output of an LVDT is connected to a 5V voltmeter through an amplifier having an amplification factor of 250. An output of 2mV appears across the terminals of LVDT when the core moves through a distance of 0.5 mm. Calculate the sensitivity of the LVDT and that of the instrument. The milli-voltmeter scale has 100 dvisions. The scale can be read to 1/5 of a division.

- **4A.** With a neat diagram and corresponding graph, explain the working of a single slope analog **(03)** to digital converter.
- **4B.** With a neat diagram, explain the working of a binary weighted digital-analog converter. For a reference voltage of 5V, create a table of analog voltage output of a 4 bit binary weighted digital-analog converter. Let $R = 100K\Omega$, $R_f = 400K\Omega$. (03)
- **4C.** With the help of the basic ladder logic, explain the operation of an UP counter in ensuring the DETERMINISTIC nature of an industrial process.


Fig. Q 4C depicts a typical automated product packaging process. Once, the employed photoelectric sensor (X0) detects 10 products on the conveyer belt, the robotic arm (Y0) automatically packs the product carton placed at the end of the chain. The whole packaging process is reset upon the successful packaging of every batch of 10 products. With appropriate ladder logic, explain the proposed solution to achieve the above stated aim.


- **5A.** With neat block diagrams explain the concepts involved in signal measurement and instrumentation related to an ECG measuring system
- 5B. With neat schematics, explain the Bit fields of Standard CAN and Extended CAN. Explain the concept of Arbitration in CAN based data transmission. (03)
- 5C. With a neat diagram and accompanying waveforms of input current, switching current and explain the working of an ideal Boost converter. (04)

(04)

(03)

(04)

Standard Resistor Values (±5%)									
1.0	10	100	1.0K	10K	100K	1.0M			
1.1	11	110	1.1K	11K	110K	1.1M			
1.2	12	120	1.2K	12K	120K	1.2M			
1.3	13	130	1.3K	13K	130K	1.3M			
1.5	15	150	1.5K	15K	150K	1.5M			
1.6	16	160	1.6K	16K	160K	1.6M			
1.8	18	180	1.8K	18K	180K	1.8M			
2.0	20	200	2.0K	20K	200K	2.0M			
2.2	. 22	220	2.2K	_ 22K	_220K	2.2M			
2.4	_ 24	240	2.4K	_24K	240K	2.4M			
2.7	27	270	2.7K	27K	270K	2.7M			
3.0	30	300	3.0K	30K	_ 300K	3.0M			
3.3	33	330	3.3K	33K	330K	3.3M			
3.6	36	360	3.6K	36K	360K	3.6M			
3.9	39	390	3.9K	39K	390K	3.9M			
4.3	43	430	4.3K	43K	430K	4.3M			
4.7	47	470	4.7K	47K	470K	4.7M			
5.1	51	510	5.1K	51K	510K	5.1M			
5.6	56	560	5.6K	56K	560K	5.6M			
6.2	62	620	6.2K	62K	620K	6.2M			
6.8	68	680	6.8K	68K	680K	6.8M			
7.5	75	750	7.5K	75K	750K	7.5M			
8.2	82	820	8.2K	82K	820K	8.2M			
9.1	91	910	9.1K	91K	910K	9.1M			
Standard Capacitor Values (±10%)									
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10µF			
12pF	120pF	1200pF	.012µF	.12µF	1.2µF				
15pF	150pF	1500pF	.015µF	.15µF	1.5µF	r			
18pF	180pF	1800pF	.018µF	.18µF	1.8µF				
22pF	220pF	2200pF	.022µF	.22µF	2.2µF	22µF			
27pF	270pF	2700pF	.027µF	.27µF	2.7µF				
33pF	330pF	3300pF	.033µF	.33µF	3.3µF	33µF			
39pF	390pF	3900pF	.039µF	.39µF	3.9µF				
47pF	470pF	4700pF	.037µF	.47μF	4.7μF	47uF			
56pF	560pF	5600pF	.047µP	.47μΓ .56μF	5.6μF	-1/01			
	680pF	6800pF							
68pF		-	.068µF	.68µF	6.8µF				
82pF	820pF	8200pF	.082µF	.82µF	8.2µF				