Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

I SEMESTER M.TECH (ENERGY SYSTEMS & MANAGEMENT)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: LIGHTING SCIENCE: DEVICES & SYSTEMS [ELE 5104]

REVISED CREDIT SYSTEM

Time: 3 Hours		Date: 18 November 2017	Max. Marks: 50		
Instru	uctions to (Candidates:			
	✤ Answ	er ALL the questions.			
	✤ Missin	ng data may be suitably assumed.			
1A.	With relev propagatio	vant sketches, explain the different types of reflections in accordanc	e with the	(04)	
1B.	With the h	elp of spectral eye sensitivity curve, explain the three types of visions.		(04)	
1C.	A full rad wavelengt wavelengt	iator when heated to 3027° C gives a maximum radiation of $5*10^{12}$ h of 872.1 n-m. Determine the temperature and maximum radi h of 555 n-m.	w/m ² at a ation at a	(02)	
2A.	Define the	following:			
	(i) (ii) (iii) (iv)	Luminance Intensity Illuminance Luminance Point Source		(04)	
2B.	A 1000 W of 10 m di half throu working p	lamp with an efficiency of 0.85 watts/Cd gives a uniform illumination o ameter. Half of the lumen output reaches the working plane directly an gh a reflector having an efficiency of 80%. Determine the illumina lane.	ver an area d the other nce on the	(02)	
2C.	A room of centre. The	dimension 10 m X 6 m and height 3 m has a lamp of uniform intensity 30 e drop of the lamp from the ceiling is 0.5 m. Calculate the illumination d)0 Cd at the ue to lamp		
	(i) (ii) (iii)	directly below the lamp on the floor bottom corners of the room midway at the bottom of the walls.		(04)	
3A.	Explain th	e VI characteristics of low pressure gas discharge phenomenon.		(04)	
3B.	With a neat diagram, explain the construction of high pressure mercury vapor			(04)	
3C.	Comment	on the colour rendering index and lamp life of a fluorescent lamp.		(02)	
4A.	With relev for differe	ant sketches, bring out the differences in the light distribution of circula nt positions of the source.	r reflectors	(02)	
4B.	Explain the different techniques used for the measurement of photometric data of a luminaire using gonio-photometer and light sensor. (0				

4C. The photometric test data of a luminaire having a lamp of nominal flux 14200 lm is given below:

Angle	0	10	20	30	40	50	60	70
Luminous Intensity	2136	2043	1926	1758	1613	1481	1289	1108
Angle	80	90	100	110	120	130	140	150
Luminous Intensity	992	748	582	312	196	87	46	19

Determine the total lumen output using Zonal Integration method. Also, calculate LOR, DLOR and ULOR.

- **5A.** What is the necessity of screening device? Explain the different types of screening devices. **(04)**
- **5B.** A room of length 20 m, width 8 m and height 6.5 m is to be illuminated with ceiling mounted luminaires having a suspension of 0.75 m. Determine the glare index using the glare index table given below:

Room D	imension	GI		
Х	Y			
1H	4H	16		
1H	6H	19		
2H	4H	23		
2H	6H	28		

- **5C.** Write brief notes on the following tests to be conducted on a luminaire:
 - (i) Rain proof test
 - (ii) Dust proof test

(04)

(02)

(04)