Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent Institution of MAHE, Manipal)

I SEMESTER M.TECH (POWER ELECTRONICS & DRIVES) MAKE-UP EXAMINATIONS, DECEMBER 2017

SUBJECT: POWER ELECTRONICS DEVICES & CONVERTER TOPOLOGIES [ELE 5121]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date: 26 DECEMBER 2017 Max. Mar	ks: 50
 Instructions to Candidates: ♦ Answer ALL the questions. ♦ Missing data may be suitably assumed. 		
1A.	Explain the safe operating area of a Power BJT in forward biased state with a neat graph.	(02)
1B.	Briefly explain the problems associated with series connection of SCRs. Hence comment on the remedy for the same.	(04)
1C.	Describe the switching characteristics of power MOSFET with the help of equivalent circuits.	(04)
2A.	A Single phase full converter, connected to 230V, 50Hz source, is feeding a load R=10 Ω in series with a large inductance that makes the load current ripple free. For a firing angle of 45°, calculate the power factor and efficiency.	(05)
2B.	With the help of circuit diagram, and waveforms of load voltage and load current, explain the working of a single phase fully controlled full wave rectifier feeding an RL load with continuous current. And also derive the RMS output Voltage.	(05)
3A.	Explain the operation of a three phase fully controlled converter feeding an RL load with continuous current. Draw the circuit diagram and waveforms of load voltage and load current at firing angle is 90°. Indicate the triggering instants of the devices on the waveform and also derive the output voltage.	(05)
3B.	Explain the effect of source inductance on a three phase fully controlled ac-dc converter feeding an RL load. Draw the circuit diagram and waveforms of load voltage and load current.	(05)
4A.	Consider the buck converter to produce an output voltage of 18V across a 10Ω load resistor the output voltage ripple is must not exceed 0.5%. The DC supply is 48V. Design for continuous inductor current, specify the duty ratio. The switching frequency is 40Khz. Find the value of inductor and capacitor.	(05)
4B.	With the help of neat circuit diagram and relevant waveforms explain the working of cascaded multilevel inverter. What are its advantages and disadvantages? Explain its target applications.	(05)

- **5A.** Give a technical comparison of square wave switching and Sinusoidal PWM switching of 1-φ full bridge voltage source inverters. Explain unipolar switching of 1-φ full bridge voltage source inverters with the help of suitable waveforms. Also draw and explain its harmonic spectrum.
- **5B.** Write a technical note on SVPWM used in Inverter and ZCS resonant-switch dc-dc converter. *(06)*

(04)