

FIRST SEMESTER M.Tech. (ME) DEGREE END SEMESTER EXAMINATION NOV 2017 SUBJECT: VLSI PROCESS TECHNOLOGY (ECE - 5124)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.Missing data may be suitably assumed.
- 1A. A pre-deposition process is carried out for 15 minutes on n-type silicon wafer with phosphorous dopant concentration of 10^{17} /Cm³ at 950^oC by using diborane gas. Assuming intrinsic diffusion, determine junction depth. At 950^oC, the boron saturation concentration is 3.8 x 10^{20} / cm³ and boron diffusion constant is 1.5 x 10^{-15} cm² / sec.

After initial pre-deposition process, the sample undergoes drive-in diffusion process for one hour at 1250° C. What is final junction depth? At 1250° C, the boron diffusion constant is 1.2×10^{-12} cm²/ sec.

1B. What is extrinsic diffusion? How the diffusion of the dopants will be modified in this case? Explain the diffusion of high concentration of phosphorus dopants in Si.

(5+5)

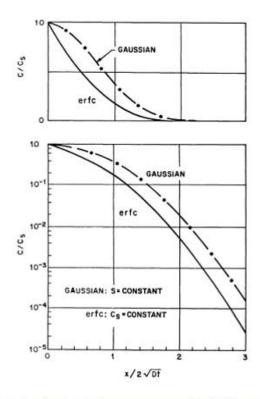
- 2A. In capacitance-voltage(CV) measurement, if the bias voltage is ramped from negative set point to positive value, how the values of capacitance is effected in comparison to performing the experiment in reverse direction. Explain.
- 2B. A 1000 Ågate oxide is required for some technology. It has been decided that the oxidation will be carriedout at 1000 ° C, in dry oxygen. If there is no initial oxide, how long the oxidation has to be performed. Compare the result for, if the oxidation is performed in wet oxidation. Given: For dry oxidation, B/A = 3.00µm/hour and B = 0.49 µm² /hour. And for dry oxidation: B/A = 0.150 µm/hour and B = 0.0159 µm² /hour.
- 2C. i) What is effect of inert anneal after oxidation? Explain.ii) Explain the limitation of Deal-Grove model of oxidation and attempts to solve.

(3+4+3)

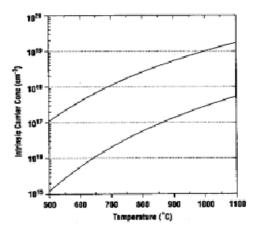
- 3A. At what temperature the Ga and As vacancy densities become equal in GaAs. Given that activation energy of Ga vacancy is 0.4 eV and that for As is 0.7 eV.
- 3B. A silicon wafer that has 2 x 10¹⁹ /cm³ of Arsenic is found to have a neutral vacancy concentration of 2 x 10 ¹⁰ /cm³ at some processing temperature and a singly ionised vacancy concentration of 10¹⁹ /cm³ at the same temperature. Find the temperature and the activation energy of the charge vacancy with respect to intrinsic energy.
- 3C. What are the limitations of CV technique in determining the diffusion profiles of dopants.

(3+4+3)

- 4A. Write the chemical equations in the formation of silicon film in CVD technique.
- 4B. What are the factors to be considered for positioning of the substrates in CVD chamber?
- 4C. Define heteroepitaxy and explain with two examples.


(3+3+4)

ECE -- 5124


Page 1 of 2

- 5A. What is requirement of Si wafer cleaning to obtain epitaxial growth. Describe a technique to purify hydrogen gas to inlet into the vapour phase epitaxial reactor.
- 5B. Compare and contrast the CVD mechanisms for epitaxial and poly Si deposition mechanisms.

(4+6)

Normalized concentration versus normalized distance for the *erfc* and Gaussian functions.

Intrinsic carrier concentration of silicon and GaAs as a function of temperature.