

I SEMESTER M.TECH. (SOFTWARE ENGINEERING)

MAKEUP EXAMINATIONS, DEC 2017/JAN 2018

SUBJECT: ADVANCED DATA STRUCTURES AND ALGORITHMS [ICT 5121] REVISED CREDIT SYSTEM (20/12/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.
- 1A. Merge the two leftist heaps shown in Fig. Q1A. Show all the steps clearly. Analyse the complexity of Merge in a leftist heap.

- Fig. Q.1A
- Show the result of inserting 8, 11, 16, 24, 6, 4, 7, 15, 13, 9, 17, 4, 21, 23, 12, one at a time into an initially empty binary min heap. Determine the time complexity of insertion.
- 1C. Describe the extendible hashing technique with an example.
- With illustrations, explain the various cases to be considered during deletion of a node in a red 2A. black tree and how they are handled.
- Describe the Strassen's matrix multiplication algorithm. Compare the algorithm with simple 2B. divide and conquer matrix multiplication algorithm in terms of complexity.
- What are randomized algorithms? Explain how randomness can be incorporated in skip lists. 2C.
- 3A. Find the maximum flow from's' to't' in the network shown in Fig. Q.3A.

Fig.Q.3A

2

- 38. With an example explain Huffman's coding algorithm. Which algorithm design technique does this exhibit?
- 3C. Delete P from the B+ tree shown in Fig. Q.3C and add O to it after. Draw the tree after each operation.

Fig. Q.3C

AA. Construct the minimum spanning tree for the graph shown in Fig. Q.4A using Prim's algorithm. 5 Is the minimum spanning tree same using Kruskal's algorithm? Justify.

Fig.Q.4A

- 4B. Explain the dynamic programming method of construction of an optimal binary search tree.
- 4C. Distinguish between NP hard and NP complete problems. Also explain reducible problems with an example.
- **5A.** Write the complete pseudo code for sorting a list of elements using merge sort. Trace the code for a sample list containing 10 elements. Write the recurrence relation for merge sort and solve it.
- 5B. Insert the following sequence of keys in an empty splay tree. Show all the steps clearly.
 9 2 90 53 4 64 95 59
- **5C.** Differentiate between union-by-size and union-by-height of disjoint sets with suitable examples.

3

5

2