

I SEMESTER M.TECH (SOFTWARE ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: ADVANCED DATABASE MANAGEMENT STSTEMS [ICT 5124]

REVISED CREDIT SYSTEM (23/11/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates

- * Answer ALL questions.
- Missing data if any, may be suitably assumed.
- 1A. Explain the data server architecture and highlight the issues that need to be addressed 5 during its implementation.
- 1B. Find the correlation coefficient for the data given in Table Q.1B by using the Pearson 3 correlation coefficient.

Table Q.1B

Age	Glucose_Level	
43	99	
21	65	
25	79	
42	75	
57	87	
59	81	

1C. Distinguish between Interquery and Intraquery Parallelism.

- 2
- 2A. Compute canonical cover for the following relation R and its functional dependency set F. R = (A, B, C), $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- 2B. List and explain binning techniques for smoothing out the data.

3

2

2C. Consider a relational schema R=(Student ID, Semester, Lecture, Teaching Assistant) and the set of functional dependency $F = \{ \text{Student ID} \rightarrow \text{Semester}, \}$

Student ID, Lecture → Teaching Assistant,

Student ID, Lecture → Teaching Assistant, Semester}.

Find its candidate key.

3A. Compute the frequent items using FP Tree by considering a minimum support count of 5

2, for the following set of transactions:

 $\{T1 = \{I1,I2,I5\}, T2 = \{I2,I4\}, T3 = \{I2,I3\}, T4 = \{I1,I2,I4\}, T5 = \{I1,I3\}, T6 = \{I2,I3\}, T7 = \{I1,I3\}, T8 = \{I1,I2,I3,I5\}, T9 = \{I1,I2,I3\}\}$

3B. Explain three data partitioning strategies with an example each.

3

3C. Distinguish between snowflake and star schema.

2

4A. Consider the data objects given in Table Q.4A which represents the scores of two 5 variables A and B of seven subjects. Use K-means algorithm and Euclidean distance measure to discover two clusters by considering subject 1 and 4, i.e (1.0, 1.0) and (5.0, 7.0) as initial cluster centers.

Table Q.4A

Subject	A	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

4B. Explain the two phase commit protocol.

3

4C. Differentiate between speedup and scaleup in parallel systems.

2

5A. Write a pseudo code for Maximal Frequent Candidate generation procedure in pincer 5 search algorithm. During the execution of Pincer-search Algorithm, it is found that when k=1, $L_1 = \{\{A\}, \{B\}, \{C\}, \{D, \{E\}\}, S_1 = \{\}, MFCS = \{A,B,C,D,E\}, MFS = \{\}\}$ when k=2, $L_2 = \{\{A,B\}, \{A,C\}, \{A,E\}, \{B,C\}, \{B,D\}, \{B,E\}\}$ and $S_2 = \{\{A,D\}, \{C,D\}, \{C,E\}, \{D,E\}\}$

Find the following:

- (i) MFCS, MFS, when k=2
- (ii) L₂ after MFS pruning
- (iii) C₃ after MFCS Pruning. Indicate all steps.
- 5B. Explain how fragment and replicate join works with a neat diagram.
- 5C. How do you create and access collection valued attributes in an object oriented databases? 2
