

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

I SEMESTER M.TECH. (MECHANICAL ENGINEERING) END SEMESTER MAKEUP EXAMINATIONS, NOV/DEC 2017

SUBJECT: APPLIED NUMERICAL METHODS [MAT 5101]

REVISED CREDIT SYSTEM (02/01/2018)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Perform one iteration of Bairstow method to extract the quadratic factor of the						
IA.	polynomial $x^4 + x^3 + 2x^2 + x + 1 = 0$. Take the initial approximation as (0.5, 0.5).	4					
1B.	Prove that n th difference of an n th degree polynomial is a constant	3					
	Solve the equations by relaxation method						
1C.	-2x + 2y + 7z = 19,9x - 2y + z = 50, x + 5y - 3z = 18.	3					
2A.	Obtain the error in Simpson's 1/3 rd rule.	4					
<u> </u>	Apply Milne's method to find $y(0.8)$ of the differential equation						
		3					
2B.	$y' = x - y^2, 0 \le x \le 1, y(0) = 0$	3					
	Given $y(0.2)=0.02$, $y(0.4)=0.0795$, $y(0.6)=0.1762$						
2C.	Define functionals and base function in finite element method. Give one example for	3					
	each.						
	Determine the largest eigen value and the eigen vector of the matrix $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.	4					
3A.	0 -1 2	4					
	Carry out 5 iterations with initial vector as $[1, 0, 0]^T$						
3B.	Solve $y'' - 2x^2y' + 2y = 0$, $y(0) + y'(0) = 5$, $y(1) = 0$. Take $h = 0.5$	3					
3C.	Derive Newtons forward interpolation formula	3					
00.							
4A.	Solve $u_{tt} = u_{xx}, 0 < x < 1, t > 0$,						
	$u(x,0) = 100 \sin \pi x$, $u(0,t) = 0$, $u(1,t) = 0$. $u_t(x,0) = 0$						
	compute "u" for 4 time steps with $h = 0.25$.						
4B.	Calculate $\sqrt[3]{41}$ correct to four decimal place	3					
Μ	AT 5101 Page 1 of 3						

	●		AT T		. No.								
4C.	MAI A Constitute for X:	· / -	nipal University Newton's 7	divideo 11	d differ 13								з Y 3
5A.	rod is give	A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various time t seconds. Find the velocity and acceleration of the slider when $t = 0.3$ seconds.t00.10.20.30.40.50.6											4
	x	30.13	31.62	32.8		33.64	33	.95	33.	81	33.2	4	
5B.	Solve the equations by Gauss-Seidel method 2x + y + 6z = 9; $8x+3y+2z=13$; $x+5y+z=7$, carryout three iterations.										3		
	Solve the o	equation -	$\frac{d^4y}{dx^4} + 81$	$y = \phi(x)$	c), y(()) = y'((0) = y	,"(1) =	= y‴(1)) = 0 v	where		
5C.	$\phi(x)$ is given by the table:										3		
				$\frac{x}{\phi(x)}$	1/3 81	2/3 162	1 243]					