MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

I SEMESTER M.TECH. (MECHANICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2017

SUBJECT: APPLIED NUMERICAL METHODS [MAT 5101]

REVISED CREDIT SYSTEM (8/12/20`7)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1 A .	Use synthetic division and perform two iterations of Birge-Vieta method to find the smallest positive root of the polynomial $x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$. Take the initial approximation as 0.5.							4	
1B.	A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various time t seconds. Find the velocity and acceleration of the slider when $t = 0.6$ seconds.								3
	t	0	0.1	0.2	0.3	0.4	0.5	0.6	
	x	30.13	31.62	32.87	33.64	33.95	33.81	33.24	
1C.	Solve the tri-diagonal system of equations 2x + y = 0; $3x + y + z = 1$; $2y + z + u = 0$; $3z - u = 2$.							3	
2A.	Determine the largest eigen value and the corresponding eigen vector of the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ carry out 4 iterations with $X^{(0)} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$.								4
2B.	Apply Milne's method to find $y(0.3)$ of the differential equation $y' = x^2 + y^2$ for $y(0) = 1$. Find the values $y(-0.1)$, $y(0.1)$, $y(0.2)$ from the Taylor series method, correct to 4 decimal places.								3
2C.	What is finite element method? Define functionals and base function in finite element method.								
3A.	Find the real root of the system of the equations $x^2 + y^2 = 1.12$, $xy = 0.23$ by taking the initial approximation $x_0 = 1$, $y_0 = 0.2$ correct for 2 decimal places.								4

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

WSP.	RED BY ^{UV} A Constituent Institution of Manipal University								
3B.	Using Shooting method, Solve the boundary value problem $y''(x) = y(x), y(0) = 0, y(1) = 1.17$.	3							
3C.	Obtain error formula for Trapezoidal Rule.								
4 A .	Using Crank-Nickolson's Scheme, solve $u_t = \frac{1}{16}u_{xx}$; $0 < x < 1$, $t > 0$, $u(x,0) = 100 \sin \pi x$, $u(0,t) = 0$, $u(1,t) = 0$. Take k=1 and compute "u" for 1 time step with $h = 0.25$.								
4B.	Derive Newton-Cotes quadrature formula								
4C.	Solve the equation $\frac{d^4 y}{dx^4} + 81y = \phi(x)$, $y(0) = y'(0) = y''(1) = y'''(1) = 0$ where $\phi(x)$ is given by the table: $\frac{x 1/3 2/3 1}{\phi(x) 81 162 243}$								
5A.	Solve the equation $\nabla^2 u = 8x^2y^2$ for the square with sides $x = -2$, $y = -2$, $x = 2$, $y = 2$ with $u = 0$ on the boundary of mesh length 1, using finite difference method.								
5B.	Solve the equations by Gauss-Seidel method 2x + y + 6z = 9; $8x+3y+2z=13$; $x+5y+z=7$, carryout three iterations.								
5C.	Evaluate f(9) using Newton's divided difference formula, given: x: 5 7 11 13 17 f(x) 150 392 1452 2366 5202	3							