Reg. No.					

III SEMESTER M.C.A

MAKEUP EXAMINATIONS,

DEC 2017

SUBJECT: DATA WAREHOUSING AND DATA MINING (MCA-5102)

REVISED CREDIT SYSTEM

(/ /2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL FIVE FULL** questions.
- Missing data may be suitable assumed.

1A.	What is Data Mining? Explain with a neat diagram the architecture of the typical Data Mining System.	5
1B.	Suppose that the data for analysis includes the attribute age. The age values of the data tuples are: 13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70. (i) Compute the 5 number summary. (ii) Clean the data by finding and eliminating outliers if any. (iii) Draw a box plot for the cleaned data. (iv) Use smoothing by bin means to smooth data using bins of depth size 3.	3
1C.	Differentiate between a data mart and a data warehouse.	2
2A.	For the following transaction data set, (i) Find all frequent item sets for minimum support of 25% using the Apriori method. (ii) Find all association rules with a minimum confidence of 80 %.	5

MCA-5102 Page 1 of 3

		Transac tion Id	I1	I2	13	I4	15	I6	I7	I8	19		
		T1	1	0	0	0	1	1	0	1	0		
		T2	0	1	0	1	0	0	0	1	0	=	
		Т3	0	0	0	1	1	0	1	0	0		
		T4	0	0	1	0	0	0	0	0	0		
		T5	0	0	0	0	1	1	1	0	0		
		T6	0	1	1	1	0	0	0	0	0		
		T7	0	1	0	0	0	1	1	0	1		
		T8	0	0	0	0	1	0	0	0	0		
2B.	Differentiate between subjective and objective measures of pattern interestingness.												3
2C.	What is the need for concept hierarchies? Create a concept hierarchy for the attribute "Location".												2
3 A .	The data warehouse for a UNIVERSITY consists of the following 4 dimensions-STUDENT, COURSE, SEMESTER, INSTRUCTOR and 2 measures —COUNT and AVG_GRADE (average grade). (i) Assume attributes and draw a STAR schema diagram for the UNIVERSITY warehouse.											COUNT and	5
	 (ii) What OLAP operations are required to extract the average grade of all students studying MCA course in 2nd semester? What does the confusion matrix represent? Define the following Classification Accuracy Measures and compute them from the confusion matrix provided below. 												
	(i) A	ccuracy Rate	9		(ii) M	lisclas	sificat	ion Ra	ate				
	(iii) s	ensitivity			(iv) s	pecific	city						
3B.		classes	bu	y_com _l = yes		buy_	compu no	ıter =		total			3
		buy_comput er = yes		6954			46			7000			
		buy_comput er = no		412			2588			3000			
		total		7366			2634			10000			
3C.	What is t method?	he need for	the I	_aplac	ian c	orrecti	on in	the I	Vaïve	Baye	sian (classification	

MCA-5102 Page 2 of 3

4A.	The following table shows the relationship between the amount of fertilizer used and												
	The height of a plant.												
	(i) Calculate a s	imple line	ar regr	ession	equati	on usi	ing F	ertiliz	er as	the c	descri	ptor	
	and Height as the response.												5
	(ii) Predict the height when fertilizer is 9.5												3
	Fertilizer 10 5	12 18	14 7	7 15	13	6	8	9	11	16	20	17]
	Height 0.7 0.4	0.8 1.4	1.1 (0.6 1.3	1.1	0.6	0.7	0.7	0.9	1.3	1.5	1.3	
4B.	Differentiate between web content mining and web structure mining.												3
4C.	Differentiate between supervised learning and unsupervised learning techniques. Give examples.												2
	Consider the following distance matrix and perform agglomerative clustering on the 5 data points. Visualize using a dendrogram.												
		p1	p2	р3	p4	p5							
	p	1 0	0.10	0.41	0.55	0.35	5						
5A.	p	2 0.10	0	0.64	0.47	0.98	3						5
	p:	3 0.41	0.64	0	0.44	0.85	5						
	p ₄	4 0.55	0.47	0.44	0	0.76	3						
	p:	5 0.35	0.98	0.85	0.76	0							
	Given two data points	X= (12, 3	32, 27,	17) and	d Y= (1	4, 20	, 46,	8) .					
	(i). Represent them as a data matrix.												
5B.	(ii). Represent them as a distance matrix using												3
JD.	Euclidean distance between the data points												
	2. Manhattan distance between the data points.												
	3. Minkowski distance between the data points using q = 3. How outliers are spotted using the Density based clustering technique?												
5C.	Tiow outliers are spott	eu using		isity De	is c u ci	uəleii	ng te	OI II IIC	lue :				2

MCA-5102 Page 3 of 3