Question Paper

Exam Date & Time: 05-Jan-2018 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SCHOOL OF INFORMATION SCIENCES FIRST SEMESTER MASTER OF ENGINEERING - ME (Embedded Systems) DEGREE EXAMINATION (MAKE - UP) - JANUARY 2018 DATE : FRIDAY, JANUARY 05, 2018 TIME : 10:00AM - 1:00PM Digital Signal Processing [ESD 602]

Marks: 100

Duration: 180 mins.

Answer all the questions.

1)	Compute the DFT of the sequence $x(n) = [0.707, 1, 0.707, 0, -0.707, -1, -0.707, 0]$ using DIT-FFT algorithm. Draw the flow graph indicating the intermediate values.	(10)
2)	Realize the following system functions using Direct form-I, Direct form-II, Cascade / Parallel form $H(z) = [(1 - 0.25z^{-1}) (z^{-2} - 5z^{-1} + 6)] / [(z^{-2} - 2z^{-1} + 2.5) (1 - 2z^{-1})]$	(10)
3)	- $0.75z^{-1}$] Implement the frequency sampling structure for the impulse responses h(n) = δ (n) + 2δ (n-1) + δ (n-2)	(10)
4)	Explain Gibb's Phenomenon in FIR filters. How can it be reduced?	(10)
5)	A third ordered Butterworth lowpass filter with 3 dB frequency of 5k Hz is to be realized using digital system. The sampling period is 10μ sec. Realize the filter using Impulse Invariance technique.	(20)
6)	What is Multirate Signal Processing? Obtain the expressions both in time domain and frequency domain for the signal, which is up sampled by a factor I.	(10)
7)	Design a phase shifter that shifts the phase of the spectrum of a signal by a value less than one unit. Also explain how a phase shift of more than one unit, can be achieved.	(10)
8)	Explain LMS adaptive algorithm. Explain how LMS adaptive algorithm is made use to make the Weiner Noise Canceller Configuration adaptive based on the steepest descent	(10)

technique.

⁹⁾ Explain the internal and external memory organization in ⁽¹⁰⁾ TMS320C6X DSP Processor.

-----End-----