

MANIPAL UNIVERSITY

SCHOOL OF INFORMATION SCIENCES SECOND SEMESTER MASTER OF ENGINEERING - ME (Embedded Systems) DEGREE EXAMINATION - NOVEMBER 2017

DATE: Wednesday, November 15, 2017 TIME: 10:00AM - 1:00PM

Digital Signal Processing [ESD 602]

Marks: 100 Duration: 180 mins.

Α

Answer all the questions

Aliswei	an the questions.	
1)	Using Radix-2 DIF-FFT algorithm, compute the IDFT. Given that	(10)
	X(k) = [20, -5.828-j2.414, 0, -0.172-j0.414, 0, -0.172+j0.414, 0, -5.828+j2.414].	
2)	Prove that an FIR filter having symmetric response provides a linear phase. Show the realization.	(10)
3)	Obtain the frequency sampling structure of an FIR filter having N number of filter coefficients.	(10)
4)	Determine the parameters of FIR filter using windows which has the following specifications, $\omega_{\rm p}=0.2\pi$ rad, $\omega_{\rm S}=$	(10)
	0.3π rad and stop-band attenuation is 50 dB	
5)	A lowpass filter is to have magnitude response constant within -1dB in the frequency range 0 to 100Hz. Response should fall monotonically to less than -15dB at frequency of 150Hz. Design a digital Chebychev filter using bilinear transformation to meet the above specifications. Sampling period is 1mSec. Realize the filter.	(20)
6)	What is Multirate Signal Processing? Obtain the expressions both in time domain and frequency domain for the signal, whose sampling rate is changed by a rational factor I/D.	(10)
7)	What is a digital filter bank? Explain how an uniform DFT filter bank can be implemented using multirate signal processing.	(10)
8)	Explain LMS adaptive algorithm. Explain how LMS adaptive algorithm is made use to make the Weiner Filter	(10)

Configuration adaptive based on the steepest descent

technique.

Explain how a higher throughput is obtained using the VLIW architecture. Give an example of a DSP that has VLIW architecture. Explain what is meant by instruction pipelining. Explain with an example, how pipelining increases the throughput efficiency.

-----End-----