Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MY A Constituent Institution of Manipal University

V SEMESTER B.TECH. BIOTECHNOLOGY END SEMESTER EXAMINATION, NOV/DEC 2017 SUBJECT: SEPARATION TECHNIQUES IN BIOTECHNOLOGY[BIO3103]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Missing data may be suitable assumed.

1A.	 400 k mole/h of a feed gas mixture is subjected to gas absorption by fresh solvent in a tray column containing 10 trays (equilibrium). The equilibrium relationship is Y=0.45X where X and Y are mole ratios in liquid and gas respectively, with usual notations. Feed gas contains 8% (mole) of the solute, and it is desired to remove 90% of the solute from the feed. (i) Plot equilibrium line and operating line (ii) Determine the liquid rate to the column, and (iii) Determine composition of the liquid and gas leaving 7th tray (from bottom). 										2 2 1							
1B.	biolo $\frac{t}{X_{m,}}$	gical 0 0.19 vert th X-axis	solid b 10 0.176 e data	20 0.153 into rat	$\frac{30}{0.13}$	ir at 70 40 0.107 Irying	0 ⁰ C. 50 0.08 (g-w	60 4 0.0 ater/g	<u>70</u> 64 0. -dry s) 050	80 0.039	90 0.03	100 1 0.0	$\frac{1}{26}$	<u>20</u> 0.018	140 0.014	ng of a 160 0.012 oisture	5
2		nd H _I	table in the second se	e entha gm % in va gm	alpies	of vap				ter v 42 63 80 23	20 3 3 7) 2	halpy 385 73 40 37	/ data 350 83 50 54	at 1 320 90 50 75	29 10 49	95	re.	

2.	 (i) Convert the data to mole fractions (x-y) and plot, provide specimen calculation for one set of data. (ii) Plot H-xy with tie- lines (keep it above x-y diagram matching the x-axes data). Both the enthalpies (Hv and H_L) should be converted to calories per mole. (iii) A feed containing 60% mole methanol and rest water is flash distilled at 1 atm. What is the fraction of liquid and vapour obtained if desired vapour composition is 0.75. Use both H-xy and x-y diagram for the calculations. Mol. Wt. of methanol is 32. 										
3A.	The following is the equilibrium data of colour adsorption from sugar solution by active charcoal. $ \begin{array}{c cccc} $	4 1									
	A solution of raw cane sugar 48% sucrose is coloured by small quantities of impurities. Decolourization is done by adding small dose of carbon and noting change in equilibrium colour. Original colour = 20 units on arbitrary scale. Assume non-adsorption of water. Convert the data to kg carbon/kg dry sugar (y-axis) vs. % colour removed (x-axis) and plot.										
3B.	Explain the Freundlich and Langmuir theory of adsorption.										
3C.	Elucidate the plate theory of chromatography by taking up 5 equilibrium plates and a single component, K=1 and feed concentration is 80 µmol										
4A.	With examples of different charges, explain the principles of Ion Exchange Chromatography.										
4B.	Define K_d in Size Exclusion Chromatography. Give reasons for three different values of K_d (K_d =0, K_d =1, 0< K_d <1, K_d >1) in size Exclusion Chromatography										
4C.	Draw the batch drying rate curves for wet solids, provide reasons for the different behaviors based on hygroscopicity; provide examples (i) Boundary layer Control drying (ii) Boundary Layer – Internal Diffusion Control Drying (iii) Internal Diffusion Control Drying 										
4D.	Define the following - Free Moisture, Equilibrium Moisture, Bound and Unbound Moisture Use appropriate diagram.										
5A.	How many grams of seed antibiotic with a size of 0.05 mm are required to produce 160 g/litre of a size of 1mm? Assume that the crystals are nearly uniform and have a density of 1.04 g/litre.										
5B.	What are the four different types of nucleation in crystallization process? Explain their significance.										
5C.	Draw and explain the equilibrium diagrams for leaching (X-Y, N-XY with tie lines) (a) Solute is infinitely soluble in solvent and solvent gets adsorbed by solids (b) Solute is partially soluble in solvent and solvent does not get adsorbed by solids (c) Solute is infinitely soluble in solvent and solvent is not adsorbed by solids										
	Explain tailing and fronting in chromatography	2									