Reg. No.

Manipal Institute of Technology, Manipal

(A Constituent Institute of MAHE)

V SEMESTER B.TECH (CHEMICAL ENGINEERING) MAKE UP EXAMINATIONS, Dec 2017

SUBJECT: CHEMICAL REACTION ENGINEERING 1 [CHE 3102] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

Answer **ALL** the questions and any missing data may be suitably assumed.

1A.	Obtain an equation to analyze the total pressure data obtained from a constant volume batch reactor.						06
1B.	The pyrolysis of ethane proceeds with an activation energy of about 300 KJ/mol. How much faster is the decomposition at 650 $^{\circ}$ C than at 500 $^{\circ}$ C.						04
2A.	Aqueous A reacts to form R (A \rightarrow R) and in the first minute in a batch reactor its concentration drops from $C_{Ao} = 2.03$ mol/liter to $C_{Af} = 1.97$ mol/liter. Find the rate equation for the reaction if the kinetics are second order with respect to A.						06
2B.	Explain in detail the Differential method of analysis of kinetic data.						04
3A.	A PFR operating isothermally at 773 K is used to conduct the following reaction: $A \rightarrow B + C$. If a feed of pure A enters at 5 atm and at a flow rate of 0.193 ft ³ /s, what length of pipe with a cross-sectional area of 0.0388 ft ² is necessary for the reaction to achieve a conversion of 90 %? Data: $k = 7.8 * 10^9 \exp[-19,200/T] \text{ s}^{-1}$.						06
3B.	Derive the performance equation for an ideal MFR.						04
4A.	 A + 2B → R; r_R = k₁ C_A C_B² and A + B → S; r_s = k₂ C_A C_B, with k₂ = 2k₁. Find a) What are the fractional yield expressions ψ(R/A) and ψ(R/B) for the system. b) How should the MFR be operated so as to maximize the production of R from a single feed consisting of C_{AO} = C_{BO} = 1. 						06
4B.	Quantitatively evaluate the behavior of N-equal sized MFR's connected in series.						04
5A.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						06
5B.	Explain – Instantaneous (Ψ) and over all fractional yields (ϕ).						04