Reg. No.

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

V SEMESTER B.TECH (CHEMICAL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV 2017

SUBJECT: CHEMICAL REACTION ENGINEERING 1 [CHE 3102]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

Answer **ALL** the questions and any missing data may be suitably assumed.

1A.	Explain in detail the temperature dependency of a rate equation. Compare the different theories to obtain the most suitable one.					
1B.	Explain in detail as to how the Partial analysis of a rate equation is used to determine the kinetics? (Hint: for reversible reactions)					
2A.	 2A → X + 2Y is 2nd order with respect to A (gas phase reaction). Reactant A (pure) is introduced into a constant volume batch reactor, the pressure rises by 40% in 3 min. At time t = 0 the total pressure was 1 atm. For constant pressure batch reactor find i) The time required for the same conversion. ii) The fractional increase in volume at that time. 	06				
2B.	Explain in detail the Differential method of analysis of kinetic data.	04				
3A.	The following liquid-phase reaction is carried out in a CSTR and achieves 50% conversion $A \rightarrow B$, $(-r_A) = k C_A^2$ (i) What will be the conversion if this reactor is replaced by another reactor which is six times as large? All other conditions remain the same (b) What will be the conversion if the original CSTR is replaced by a PFR of equal volume? All other conditions remain the same State all the assumptions that have been taken into account.	06				
3B.	Derive the performance equation for an ideal Batch reactor.	04				
4A.	Substrate A in the liquid phase produce R and S by the following reactions : R ; $r_R = k_1 C_A^2$ S ; $r_S = k_2 C_A$ The feed ($C_{Ao} = 1.0$, $C_{Ro} = 0$, $C_{So} = 0.3$) enters two mixed reactors in series ($\tau_1 = 2.5 \text{ min}, \tau_2 = 10 \text{ min}$). Knowing the composition in the first reactor ($C_{A1} = 0.4$, $C_{R1} = 0.2$, $C_{S1} = 0.7$) Find the composition leaving the second reactor.	06				

4B.	Discuss about the graphical procedure to find the best set up to achieve a given conversion when unequal sized MFR's (say 2 in number) are connected in series.							
5A.	Carbohydrate A carbohydrate B various concent cm ³). (a) From the foll (b) What can yo (c) Can you sug C_{A0} , mol/m ³ 200 900 1200 700 200 900	A decomposes in some way rations of A, B, lowing data find u say about the gest a mechanis $\frac{C_A, mol/m^3}{50}$ $\frac{50}{300}$ $\frac{800}{33.3}$ $\frac{80}{500}$	in the present influences this and E flow into a rate equation role of B in the m for this reaction C_{B0} , mol/m ³ 0 0 0 33.3 33.3 33.3	ce of enzyme decomposition. b and out of a n for the decompo- decomposition? on? $\frac{C_{E0}, \text{ mol/m}^3}{12.5}$ 5 5 5 33.3 10 20	E. We also To study this nixed flow reac osition. v, cm ³ /min 80 24 48 24 48 24 80 120	suspect that phenomenon tor (V = 240	07	
	A first-order liquid phase reaction, 92% conversion, is taking place in a mixed flow reactor							
5B.	It has been suggested that a fraction of the product stream, with no additional treatment, be recycled. If the feed stream remains unchanged, in what way would this effect conversion?							