Reg. No. NIPAL INSTITUTE OF TECHNOLOGY

V SEMESTER B.Tech. (CHEMICAL ENGINEERING)

MAKEUP EXAMINATIONS, Dec 2017

SUBJECT: MASS TRANSFER-II [CHE 3101]

REVISED CREDIT SYSTEM (23/12/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates: Answer ALL the questions. Missing data may be suitably assumed.

۱. A	A Liquid mixture containing 30 mole% of A (more volatile) at 30 ⁰ C is to be flash vaporized at 1 atm to vaporize 70% moles of the feed. The x-y data given below							
-	x 0 0.00 0.01 0.0 y 0 0.085 0.15 0. Calculate the compos	02 0.0891 0.14	0.28 0.37 0.477 0.56 0.60 0.644	0.61 0.64 0.7 0.70 0.72 0.75	0.78 0.89 0.8 0.89	5		
				tion of constant re	elative volatility s	ystem		
	Derive the following equation for Differential Distillation of constant relative volatility s $\log \frac{F x_F}{W x_W} = \alpha \log \left(\frac{F(1-x_F)}{W(1-x_W)} \right) \text{where F and W are feed and residue moles and } x_F, x_W \text{ are feel}$							
A	residue mole fractions and α is relative volatility $P(z_p, H_p)$ moles formed when $M(z_m, H_m)$ moles and $N(z_n, H_n)$ moles of solutions adiabatically $P(z_p, H_p)$ moles formed when $M(z_m, H_m)$ moles and $N(z_m, H_n)$ moles of solutions adiabatically $P(z_p, H_p)$ moles formed when $M(z_m, H_m)$ moles and $M(z_m, H_n)$ moles of solutions adiabatically $P(z_p, H_p)$ moles formed when $M(z_m, H_m)$ moles are through point $P(z_m, H_n)$ moles of solutions adiabatically $P(z_p, H_n)$ moles formed when $M(z_m, H_m)$ moles are through point $P(z_m, H_n)$ moles of solutions adiabatically $P(z_m, H_n)$ moles formed when $M(z_m, H_n)$ moles are through point $P(z_m, H_n)$ moles of solutions adiabatically $P(z_m, H_n)$ moles of solutions adiabatically $P(z_m, H_n)$ moles formed when $P(z_m, H_n)$ moles for $P(z_m, H_n)$ moles							
:B	mixed. Prove the straight line MIN pass through point 1 of 17 My and 19 Derive the 'q' line equation for $y = \frac{q}{q-1}x - \frac{z_F}{q-1}$ the method McCabe and Thiele method in distillation							
3A	Calculate the bubble and T is °C	e point of given sy	ystem at 1.5 atm	$Log(P) = A - \{$	B/(1+C)} F IS III	III 11g		
		Mole fraction	A	В	C			
	component 1	Mole fraction 0.4	6.87632	1075.78	C 233.205 226.28	5		
2 B	component 1	0.4	6.87632	1075.78 1189.64	233.205 226.28			
3B	component 1 2 Briefly explain the	0.4 0.6 re-boilers used in	6.87632 6.91058 distillation with	1075.78 1189.64 n neat diagram (atle	233.205 226.28 east 2)	5		
3B 3C	component 1 2 Briefly explain the With the help neat	0.4 0.6 re-boilers used in diagram explain t	6.87632 6.91058 distillation with	1075.78 1189.64 n neat diagram (atle	233.205 226.28 east 2)	5		
	component 1 2 Briefly explain the With the help neat Define osmotic pre Explain the below	0.4 0.6 re-boilers used in diagram explain tessure? four important pr	6.87632 6.91058 distillation with the hysteresis pho-	1075.78 1189.64 a neat diagram (atle enomena in drying	233.205 226.28 east 2)	2 1		
3C	component 1 2 Briefly explain the With the help neat Define osmotic pre	0.4 0.6 re-boilers used in diagram explain tessure? four important pristribution coeffice	6.87632 6.91058 distillation with the hysteresis photoperties required tient iii) recovera	1075.78 1189.64 In neat diagram (atlerenomena in drying It for a good solver It is a good solver	233.205 226.28 east 2)	2 2 1		

extracted with the following condition. Solvent used was, first stage equal amount of water and in second stage half of the water. The equilibrium data is given below

	Wt% of Dioxane in water	5.1	18.9	25.2	
	Wt% of Dioxane in Benzene	5.2	22.5	32	
5A	Briefly explain in-place leaching, heap leaching, Shanks system used in leaching				
5B	Isotonic saline solution, which has the same osmotic pressure as blood, can be prepared by dissolving 0.923 grams of NaCl in enough water to produce 300 mL of solution. What is the osmotic pressure, in atmospheres of this solution at 35°?				
5C	Define the following i) moisture content wet and dry basis ii) equilibrium moisture content				

****** END ******