Reg. No.
 Reg. No.

 MANIPAL INSTITUTE OF TECHNOLOGY

 MANIPAL

 A constituent Institution of Manipal University

V SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: PINCH TECHNOLOGY [CHE 4021]

REVISED CREDIT SYSTEM

	Time: 3 Hours MAX. MARKS: 50				
		Instructions to Candidates:			
		 Answer ALL questions. Use of Graph sheet is permitted. Missing data may be suitably assumed. 			
1A.	Ex	plain the importance of energy integration in process industries.	04		
1B.	List out the basic heuristic rules to be followed for data collection in Pinch				
1C.	A str	Process flow diagram of a typical process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process is shown in Figure 1C. Extract the earn data for this process data for this process data for the earn data for this process data for the earn data for this process data for the earn data for the e	02		
		Column 1 reboiler			
2A.	De aff	Figure: 1C: Process flow diagram for Problem 1C. fine the threshold problem in pinch design method and explain how this will ect the energy integration process.	04		

2B.	Find the minimum utilities required for four stream case for load integration with	06
	ΔT_{min} =10 °C by constructing composite curves. The stream data given in Table 2B.	

Table 2B: The stream data for the process.

stream	T _s (°C)	T _t (°C)	CP (kW/°C)
C1	25	160	2
C2	40	135	3
H1	135	40	2
H2	90	40	4

3A. The stream data for the process is given in Table 3A. For this process compute the amount of hot and cold utility required considering ΔT_{min} as 10°C by making use of Problem Table Algorithm.

Table 3A: The stream data for the process

Stream	Supply Temp. (^o C)	Target Temp. (°C)	Heat Capacity Flow rate (MW $^{0}C^{-1}$)
Hot	415	25	0.5
Hot	50	20	1.2
Cold	25	380	0.18
Cold	30	420	0.6
Cold	90	120	10
Hot	300	35	1

3B Discuss the Capital-energy trade-off for threshold problems in HENS

4A. For a process the stream data together with utility data and heat transfer coefficients are shown in Table 4A, where ΔT_{min} is selected as 10 °C. From PTA the following results are found: Amount of hot utility: 12.9MW, Amount of cold utility: 8.90MW, Pinch point: 150°C, Hot pinch: 155°C and Cold pinch: 145°C Table 4A: The stream and utility data for the process

Stream	Supply	Target	H	Heat	Film transfer		
	Temp.	Temp.	(MW)	Capacity	coefficients h		
	(°C)	(°C)		Flow rate (MW ⁰ C ⁻¹)	(Mw. m ⁻² . °C ⁻¹)		
C1	25	185	32	0.25	0.0008		
H1	260	50	-31.5	0.16	0.0009		
C2	145	235	27	0.32	0.0009		
H2	190	70	-30.0	0.26	0.0010		
HU	250	249			0.0040		
CU	25	35			0.0010		
(i) (Construct a b	alanced cold	and hot	composite cur	ves.		02
(ii) I	Evaluate the	e unknown	temper	atures of ba	lanced hot and	cold	02
(iii)	composite curves Evaluate a Cumulative enthalpies at different temperature intervals along with known interval temperatures of BHCC and BCCC				02		
(iv)	Target the h	eat exchang	e area fo	r this process			02

04

4B	Discuss the subset and loops affecting the minimum number of units in HENS	02
5A	For a particular process, the total area targeted found to be 6520.636 m ² using Pinch Design Methods. Also, the present problem requirement of minimum hot and cold utility are found to be 12.9 MW and 8.90 MW, respectively. The Cost of hot utility=150 (\$.kW ⁻¹ .y ⁻¹), Cost of cold utility =15 (\$.kW ⁻¹ .y ⁻¹), Installed capital cost = 40000 × A ^{0.83} , Rate of interest = 12% and Plant life = 6 year. Conversion of the capital cost into annual capital cost using conversion factor as: = $\frac{i(1+i)^n}{(1+i)^n-1}$. Target	04
	the cost for this process (Total Annual Cost).	
5B.	Discuss the different feasibility criteria in detail for Pinch Design Methods of Heat Exchange Networks (HENS) Synthesis.	06

