

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

V SEMESTER B.TECH. (CHEMICAL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2017

SUBJECT: TRANSPORT PHENOMENA [CHE 3103]

REVISED CREDIT SYSTEM 27/11/2017

Time: 3 Hours

MAX. MARKS: 50

es:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	State and describe a) Newton's law of viscosity, b) Fourier's Law of heat conduction c) Fick's law of diffusion.	4
1B.	Consider steady state laminar flow of the fluid at constant density in a very long circular tube of length L and radius R. Derive the velocity profile by performing a shell balance on thin cylindrical shell a) Maximum Velocity b) Average velocity	6
2A.	Two immiscible, incompressible fluids are flowing in a horizontal thin slit of length L and width W, under the influence of a pressure gradient, the fluid rates are so adjusted that the slit is half filled with fluid 1 (more dense phase) and half filled with fluid 2 (less dense phase). Determine the velocity distribution and the average velocity for the system.	10
3A.	Derive the expression for temperature profile in the rectangular fin with its ends insulated. State assumptions for it.	8
3B.	Thermocouple in a cylindrical well inserted into a gas stream, estimate the true temperature of gas stream if thermocouple junction (wall) temperature 260° C, pipe wall temperature is 176.7° C, $h = 681.36 \text{ w/m}^{2 \text{ °C}}, \qquad K = 103.8 \text{ w/m}^{\circ}$ C, $B = 2.032 \times 10^{-3} \text{ m} \qquad L = 0.06096 \text{ m}.$	2
4.	Derive an expression for diffusion through a spherical shell of radius 'r ₁ ' and gas film radius 'r ₂ ' to get concentration profile and molar flux. a) When there is no temperature change between spherical surface and gas film. b) Extend this result to describe the diffusion in Non-isothermal film in which the temperature changes with distance according to the following relation $\frac{T}{T_1} = \left(\frac{r}{r_1}\right)^n$ Where T ₁ is at temperature r ₁ .	10
	PTO	

Assume as rough approximation that D_{AB} , varies as 3/2 power of temperature

$$\frac{D_{AB}}{D_{AB1}} = (\frac{T}{T_1})^{3/2}$$

5A.	Derive the equation of continuity from the concept of mass conservation.	4
5B.	Establish Navier-Stokes equation from the fundamental momentum balance.	6