Reg. No.							
----------	--	--	--	--	--	--	--

V SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2017

SUBJECT: HIGHWAY ENGINEERING [CIE 3104]

REVISED CREDIT SYSTEM

(/ /2017)

Instructions to Candidates:

MAX. MARKS: 50

- ❖ Answer **ALL** the questions. Draw the neat sketch wherever necessary.
- Missing data may be suitably assumed.

Time: 3 Hours

❖ Code books are not allowed only the design charts and tables are permitted.

1 1		
1A.	Why it is undesirable to have much steeper cross slope?	2 marks
1B.	Derive an equation for an absolute minimum sight distance on a sloping ground.	4 marks
1C.	The two state highway intersect at an angle 80° as shown in below figure. One of the side of sight triangle is 175m. The design speed on the highway one is 100kmph. Find the maximum speed that can permitted on the second highway. Take the coefficient of friction as 0.35 and the reaction time as 2.5sec SH1 SH2	4 marks
2A.	Describe the design considerations required for a Valley curve and for a summit curve.	2 marks
2B.	What are the requirement of an ideal transition curve? Enumerate different types of transition curves available.	2 marks
2C	With a neat sketch derive an equation for an extra widening. Calculate the length of a transition curve and shift required on a National highway on a plain terrain with a curve of radius of 225m and a design speed of 75kmph. Take pavement width including extra widening as 7.5m with an allowable rate of introduction of super elevation rotated about the Centre line as 1 in 50.	6 marks
3A.	What is highway alignment? What are the basic requirements of an idle alignment? Mention the necessity of change in alignment.	5 marks
3В.	A road 60kms in length need improvements, involving widening, resurfacing, etc Following are the details of the project. (i) Cost of total improvements =10lacs per km. (ii) Vehicle operating cost = Rs. 1.5 per km per vehicle on existing road. (iii)Vehicle operating cost = Rs. 1.0 per km per vehicle on improved road. (iv)Traffic volume = 2000veh/day (v) Cost of maintenance on the existing road is Rs. 6000/km which shall be Rs. 8000/km on improved road. Show by economic analysis if, this project is worth undertaking assuming	5 marks

CIE 3104 Page 1 of 2

Reg. No.						
----------	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

analysis period of 20years at an interest rate of 10 percent.	N _{SPIRED}		A Constituent Institution of Manipal U				
pavement is adequate or not. Ignore the corner stress due to wheel load. Location: Andhra Pradesh; Road Type: NH, Traffic volume = 2992CVPD, effective modulus of subgrade reaction = 8kg/cm²/cm, grade of concrete = M40, Poisson's ratio = 0.15, coefficient of thermal expansion = 10 X 10 6/9C, tyre pressure = 8kg/cm², growth factor = 7.9%, design period = 20 years. Assumed thickness of pavement = 30cm. At the given location, axle load survey was conducted and the details are as below. Load on single axle		_					
Location: Andhra Pradesh; Road Type: NH, Traffic volume = 2992CVPD, effective modulus of subgrade reaction = 8kg/cm²/cm, grade of concrete = M40, Poisson's ratio = 0.15, coefficient of thermal expansion = 10 X 10 fo fo C, tyre pressure = 8kg/cm², growth factor = 7.9%, design period = 20 years. Assumed thickness of pavement = 30cm. At the given location, axle load survey was conducted and the details are as below. Load on single axle		Using the given data determine whether the assumed thickness of the rigid					
Total 92.87 7.13 A longitudinal channel with a trapezoidal cross section is to be constructed in a cut section. The soil is clay, with Manning's Rugosity Coefficient of 0.024. The max. allowable velocity is 0.6m/sec. Design the channel for the discharge of 3m³/sec. The bottom width of the channel can be taken as 4.57m. The side slope of the channel is 1.0 vertical to 2.0 horizontal. 5A. Explain the Level of service (LOS) concept while deciding the design capacity of a road? 5 marks Determine: a) The upper and lower values of speed limits for regulation of mixed traffic flow and b) The design speed for checking the geometric design elements of the highway. Speed group (kmph) No. of vehicles 0 to 10 45 10 to 20 69 20 to 30 168 30 to 40 189 40 to 50 444 50 to 60 500 60 to 70 200 70 to 80 187 80 to 90 169	4A.	Lo eff M tyr	pocation: Andhra Prafective modulus of 40, Poisson's ratio re pressure = 8kg/c sumed thickness of rvey was conducted Load on single ax Axle load (Tonnes 20 18 16 14 12 10	adesh; Road Typ subgrade reaction = 0.15, coefficient cm², growth factor pavement = 30 and the details at leter 8) % axle loads 1.57 4.39 10.42 21.79 23.11	e: NH, Traffic voluen = 8kg/cm²/cm, grat of thermal expansion = 7.9%, design porm. At the given present below. Load on tandem ax Axle load (Tonnes) 36 32 28 24 20 16	me = 2992CVPD, rade of concrete = fon = 10 X 10 ⁻⁶ /°C, period = 20 years. focation, axle load le	6 marks
A longitudinal channel with a trapezoidal cross section is to be constructed in a cut section. The soil is clay, with Manning's Rugosity Coefficient of 0.024. The max. allowable velocity is 0.6m/sec. Design the channel for the discharge of 3m³/sec. The bottom width of the channel can be taken as 4.57m. The side slope of the channel is 1.0 vertical to 2.0 horizontal. 5A. Explain the Level of service (LOS) concept while deciding the design capacity of a road? Determine: a) The upper and lower values of speed limits for regulation of mixed traffic flow and b) The design speed for checking the geometric design elements of the highway. Speed group (kmph) No. of vehicles 0 to 10 45 10 to 20 69 20 to 30 168 30 to 40 189 40 to 50 444 50 to 60 500 60 to 70 200 70 to 80 187 80 to 90 169		_			<16		
a cut section. The soil is clay, with Manning's Rugosity Coefficient of 0.024. The max. allowable velocity is 0.6m/sec. Design the channel for the discharge of 3m³/sec. The bottom width of the channel can be taken as 4.57m. The side slope of the channel is 1.0 vertical to 2.0 horizontal. 5A. Explain the Level of service (LOS) concept while deciding the design capacity of a road? 5 marks 6 to 10							
Determine: a) The upper and lower values of speed limits for regulation of mixed traffic flow and b) The design speed for checking the geometric design elements of the highway. Speed group (kmph) No. of vehicles	4B.	a cut section. The soil is clay, with Manning's Rugosity Coefficient of 0.024. The max. allowable velocity is 0.6m/sec. Design the channel for the discharge of 3m ³ /sec. The bottom width of the channel can be taken as 4.57m. The side					4 marks
mixed traffic flow and b) The design speed for checking the geometric design elements of the highway. Speed group (kmph) No. of vehicles	5A.						5 marks
5B. 0 to 10		mixed traffic flow and b) The design speed for checking the geometric design elements of the highway.					
5B.							
5B. 20 to 30 168 30 to 40 189 40 to 50 444 50 to 60 500 60 to 70 200 70 to 80 187 80 to 90 169			-				
5B. 30 to 40 189 40 to 50 444 50 to 60 500 60 to 70 200 70 to 80 187 80 to 90 169	5B.						
40 to 50 444 50 to 60 500 60 to 70 200 70 to 80 187 80 to 90 169			<u> </u>				5 marks
50 to 60 500 60 to 70 200 70 to 80 187 80 to 90 169							
60 to 70 200 70 to 80 187 80 to 90 169			-				
70 to 80 187 80 to 90 169							
80 to 90 169							
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		90 to 100 89					

CIE 3104 Page 2 of 2