Reg. No.						
----------	--	--	--	--	--	--

V SEMESTER B.TECH. (COMPUTER SCIENCE & ENGINEERING) END SEMESTER MAKEUP EXAMINATIONS, NOV/DEC 2017

SUBJECT: OPERATING SYSTEMS [CSE 3102]

REVISED CREDIT SYSTEM (29/12/2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.
- **1A.** Explain layered approach of operating system structure along with its advantages and disadvantages
- **1B.** Explain dual mode operation with neat diagram.

3M

4M

4M

- **1C.** Differentiate between cooperating processes and independent processes. Define various reasons for providing an environment that allows process cooperation. With pictorial representation, give 2 communication models that support inter-process-communication.
- **2A.** What are the various benefits of threads? Explain any two multi-threaded models with their advantages and disadvantages.
- **2B.** Use Preemptive SJF process scheduling algorithm to schedule the following set of **3M** processes

Processes	Arrival Time(msec)	Burst Time(msec)			
P0	4	2			
P1	5	3			
P2	3	5			
P3	0	8			
P4	1	1			

Draw Gantt chart and find waiting time and turnaround time of all processes and hence find our average waiting time and average turnaround time.

2C. What is critical section problem? Define 3 requirements for solution to any critical section problem. Explain Peterson's solution in solving critical section problem, along with structure of process Pi

3A. For the following snapshot of the system shown in table 3A, find the safe sequence using Banker's algorithm.

i. Calculate the need of each process

ii. Find the safe sequence (show the application of Banker's algorithm step-bystep)

CSE 3102 Page 1 of 2

Table 3A

Process	Allocation			Max			Available		
	R1	R2	R3	R1	R2	R3	R1	R2	R3
P1	0	1	0	7	5	3	3	3	2
P2	2	0	0	3	2	2			
P3	3	0	2	9	0	2			
P4	2	1	1	2	2	2			
P5	0	0	2	4	3	2			

- **3B.** What is dining philosopher's problem for synchronization? Give pseudocode for **4M** monitor solution to dining philosopher problem
- 3C. Explain deadlock situation of incorrect use of wait() and signal() by 2 processes on 2 resources A and B. Show complete structure of processes P1 and P2 with appropriate wait() and signal() call sequences on resources A and B causing deadlock among P1 and P2. Justify your answer
- **4A.** What is demand paging? List the steps involved in handling a page fault with neat diagram
- **4B.** Consider a disk queue with I/O requests on the following cylinders in their arriving order:

54, 97, 73, 128, 15, 44, 110, 34, 45

The disk head is assumed to be at Cylinder 23.

- (i) Calculate and show with diagram the disk head movement using FCFS-scheduling algorithm.
- (ii) Calculate and show with diagram the disk -head movement using SSTF-scheduling algorithm.
- **4C.** Differentiate between single level directory and Two-level directory with neat diagram
- **5A.** What is Belady's anomaly? Check Belady's anomaly exists for following page **4M** reference string or not with 3 frames and 4 frames. Justify your answer. Consider a, b, c, d, e are pages.

Page reference string: d, c, b, a, d, c, e, d, c, b, a, e Show page loaded and page removed during each reference.

- **5B.** Explain domain switching in MULTICS with neat diagram. **4M**
- **5C.** Explain the working of Linux scheduler in Linux scheduling. **2M**

CSE 3102 Page 2 of 2