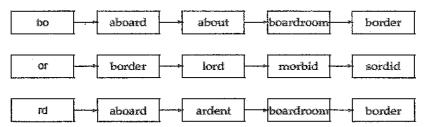
|--|

V SEMESTER B.TECH. (INFORMATION TECHNOLOGY/COMPUTER AND COMMUNICATION ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: PROGRAM ELECTIVE I – INFORMATION RETRIEVAL [ICT 4006]

REVISED CREDIT SYSTEM (27/11/2017)

Time: 3 Hours


MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- * Write the detailed steps for all the problems.
- Missing data, if any, may be suitably assumed.
- 1A. Explain the following dictionary compression techniques by giving an example for each.
 - (i) Array of fixed-width entries
 - (ii) Dictionary as a string
 - (iii) Dictionary as a blocked storage

ź

1B. Compute the Jaccard coefficients between the query *bord* and each of the terms given in Fig. Q.1B that contain the bigram *or*.

ng 17 er it is

1C. Consider a two-word query. For one term the postings list consists of the following 17 entries: [4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180,200], and for the other it is the one entry postings list: [47]. How many comparisons would be done to intersect the

two postings lists with the following two strategies. Justify the answer.

- (i) Using standard postings lists
- (ii) Using postings lists stored with skip pointers from 4 to 14, 14 to 22, 22 to 120, 120 to 200 for the first posting list

2A. Consider the following four documents:

d₁: new car loans top predictions.

d₂: car loans hike in November.

d₃: increase in car loans in November.

d4: November new car loans hike.

- (i) Draw the term-document incidence matrix.
- (ii) Write the inverted index representation.
- (iii) Write the algorithm for intersecting two posting lists.
- (iv)Find the results for the query "loans AND NOT new" using the posting lists.

5

2

ICT 4006

2B. 2C.	Write and explain the algorithm for inversion of a block in single-pass-in-memory (SPIM) indexing. Write the algorithm for computing the weighted zone score from two posting lists.	3 2
3A. 3B.	Explain various components of a complete search system with a neat diagram. Consider the three documents (d ₁ , d ₂ , d ₃) d ₁ =Pen drive damaged in fire d ₂ =Tom Cruise delivers the pen drive d ₃ =Tom Cruise at MI bureau	5
	and the query q="pen drive". Assume that the search engine uses term-frequency weighting scheme. Find the reformulated query using Rocchio method. Assume α =1, β =1 and γ =1. Relevant document set = D_r ={ d_1 , d_2 } and Non-Relevant document set= D_{nr} ={ d_3 }	_
3℃.	Note: Ignore the stop words - the, in, at. (List the vector elements in alphabetical order). Explain the different pricing models adopted in advertisement on web pages.	3 2
4A.	Consider a web graph with four nodes 1, 2, 3 and 4. The links are as follows: $1\rightarrow 2$, $2\rightarrow 1$, $2\rightarrow 3$, $3\rightarrow 2$, $4\rightarrow 3$, $4\rightarrow 2$, $4\rightarrow 1$ and $1\rightarrow 3$. Compute the PageRank after six iterations for each of the four pages. Assume that at each step of the PageRank random	
4B.	walk, we teleport to a random page with a probability 0.4. Consider the following set of documents d ₁ , d ₂ , d ₃ & query q. d ₁ : Manipal University is synonymous with excellence in higher education. d ₂ : Every institute has world class facilities and pedagogy. MIT is a constituent institute of MU. Chemnitz University of Technology, Germany is one of Partner	5
	University for student exchange programs. d3: MIT, Manipal has MOUs with Jack F Welch Technology Center (GE) Bangalore	
-	for faculty consultation, research, student projects. q: Manipal Institute of Technology.	
	Assume d ₂ , d ₃ are relevant documents and d ₁ is non-relevant document. Rank the documents using the Probabilistic Model With respect to query q. Note: Ignore stop words-of, is, for, to, in, has, with and. (Use log to the base 10).	3
4C.	What is low rank approximation? Explain how low rank approximations to the given term-document matrix is computed.	2
5A.	Consider a query (q) and a document collection consisting of three documents. Rank documents using vector space model. Assume tf-idf weighing scheme. q: Bhadra Ghataprabha Malaprabha d1: Krishna Godavari Bhadra Yamuna Narmada Ganga d2: Krishna Godavari Bhadra Caveri Narmada Ganga Malaprabha	1.1 21
	d3: Godavari Ghataprabha Caveri Narmada Ganga Ghataprabha Malaprabha Note: List the vector elements in alphabetical order.	5
5B.	What is singular value decomposition (SVD)? Find SVD for the following matrix.	
	$\begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix}$	
	$\begin{bmatrix} 2 & 1 \\ 4 & 4 \\ 4 & 2 \end{bmatrix}$	~
5C.	What is web crawler? Explain the architecture of a web crawler with a neat diagram.	3