Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, DECEMBER 2017

DIGITAL SIGNAL PROCESSING [ELE 3102]

REVISED CREDIT SYSTEM

Time	E: 3 Hours Date: 21 December 2017	Max. Mark	s: 50	
Instructions to Candidates:				
	 Answer ALL the questions. 			
	 Missing data may be suitably assumed. DSP Quick reference table may be 	used.		
1A.	An analog signal is given by $x(t) = 2\sin(250\pi t) + 3\cos(400\pi t) - \sin(600\pi t) + 5\sin(600\pi t)$	$in(750\pi t).$		
	If it is sampled at a rate of 500Hz, determine the generated discrete-time signal function of the second se	gnal. an be re-	(04)	
1 B .	The 8 point DFT of a length 8 complex sequence $v(n) = x(n) + j h(n)$ is given by	1		
	V[K] = [-2+j3, 1+j5, -4+j7, 2+j6, -1-j3, 4-j, 3+j8, j6]. Without computing IDF determine the 8 point DFTs of the sequence x(n) and h(n).	T of V[K]	(04)	
1C.	If x[n]={1, 2, 0, 3, -2, 4, 7, 5}, evaluate the following:			
	(i) X(4) (ii) $X(k) = \sum_{k=0}^{7} X(k)$		(02)	
2A.	Illustrate the over-lap add method for filtering long data sequence for $x(n)$ = 1, 0, 2, 3, 0, 1, -3, 0, -2, 3] and $h(n) = [1, -1, 1]$. Take length of the data block a	= [3 , – 1, as 4.	(04)	
2 B .	An analog signal is sampled at 1024 Hz and 2048 point DFT is computed. If the peaks are observed at $k=198 \& k=1850$, find the corresponding frequency comp	e dominant onent.	(03)	
2C.	Obtain the parallel form realizations of the LTI system governed by the equ	ation		
	$H(z) = \frac{1 + z^{-1}}{(1 + \frac{1}{8}z^{-1})(1 + \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})}$		(03)	
3A.	Find the 8 point DFT of the signal			

 $x(n) = 3 - |n| \qquad -2 \le n \le 2$

= 0 otherwise

Use radix-2 DIF FFT algorithm and show all the intermediate values on the signal flow graph.

(04)

2D	Skotch the Lattice Lodder structure for the system $U(z) = 1 - 0.8z^{-1} + 0.15z^{-2}$		
JD .	Sketch the Lattice – Ladder structure for the system $H(z) = \frac{1}{1+0.1z^{-1}-0.72z^{-2}}$.		
	Comment on the stability of the system.	(04)	
3C.	Design a FIR notch filter that rejects frequency $\omega = \pi/4$. Determine the gain such that the frequency response H(ω) satisfies the condition H(0) =1.	(02)	
4A.	Design an ideal low pass FIR digital filter using sampling frequency method to satisfy the following conditions.		
	Pass band: 0-4 kHz		
	Sampling frequency: 16 kHz		
	Filter length= 9		
	Also find the transfer function of the filter	(04)	
4B.	Design a linear phase FIR low pass filter using Hanning window by taking 7 samples of		
	the window sequence and with a cut-off frequency of 0.3π rad.	(04)	
4C.	Compare FIR and IIR digital filters.	(02)	
5A.	Design a digital low pass Butterworth IIR filter using Bilinear Transformation technique to meet the following specifications:		
	Pass band ripple: 2 dB		
	Pass band edge frequency: 0.25 rad		
	Stop band attenuation: 20 dB		
	Stop band edge frequency: 1.319 rad		
	Take T=1 sec	(05)	
5B.	Give the advantages and disadvantages of Impulse invariance technique and Bilinear transformation method.	(02)	
5C.	The poles of an analog filter are given by $s_1 = -2$ and $s_2 = -0.5$. Obtain the transfer function of the equivalent digital filter using impulse invariant transformation. Assume that T=0.01 sec.	(03)	