Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constituent Institution of Manipal University

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: DIGITAL SIGNAL PROCESSING [ELE 3102]

REVISED CREDIT SYSTEM

Tin	ne: 3 Hours Date: 17 November 2017 M	ax. Marks: 50
Ins	 tructions to Candidates: Answer ALL the questions. Missing data may be suitably assumed. DSP-Quick Reference Table can be supplied. 	
1A.	Consider an input signal given by $x_a(t) = 3\cos 2000 \pi t + 5\sin 6000 \pi t - 10\cos 12000$ sampling rate is 5000 samples/sec. (i) Find the folding frequency. (ii) Determine the disc signal $x[n]$. Illustrate aliasing if any. (iii) What is the analog signal $y_a(t)$ that can be co- from the samples using ideal interpolation?	πt . The crete time nstructed (04)
1B.	For the given sequence, $x[n] = -2\delta(n+1) + 2\delta(n) + \delta(n-1) + \delta(n-2)$, find 5- point DFT using Twiddle factor	r. (04)
1C. 2A.	The 8-point DFT of a real sequence is $X(k) = \{1, A, -1, B, 0, -j2, C, -1+j\}$. Find A If $x[n] = \delta[n] + 2\delta[n-2] - \delta[n-5]$ has a 6 point DFT X(k), find the inverse DFT of	, B and C. (02)
2B.	(i) Re[X(k)] (ii) Im[X(k)] Determine the output $y[n]$ of a filter using Overlap save method whose impulse re $h[n] = 2\delta[n] - \delta[n-1] + 2\delta[n-2]$ and input sequence $x[n] = (-1)^n [u(n) - u(n-12)]$, frame length of 4.	(03) sponse is Take sub- (04)
2C.	Sketch pole-zero plot and obtain the respective transfer function of IIR low-pass, high notch filter using the pole-zero placement technique.	-pass and (03)
3A.	Discuss the reduction in computational complexity of radix-2 FFT algorithm as condirect DFT computation. Obtain the time domain sequence $x[n]$ using 8 point Radix-2 algorithm where the first five DFT coefficients of the real sequence is given as:	npared to 2 DIT-FFT
3B.	$X(k) = \{0, \{2\sqrt{2} - j2\sqrt{2}\}, 0, 0, 0, \dots, \}$ Obtain and draw the direct form I, direct form II and cascade (first order sections) stru for the filter given by the difference equation $y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$	(04) ctures

ELE 3102

Page 2 of 2

- **3C.** Design an FIR digital filter that will reject a very strong 60 Hz sinusoidal interference contaminating a 200Hz useful sinusoidal signal. Determine the gain of the filter such that the filter does not change the amplitude of the useful signal. Assume sampling frequency Fs = 500Hz. Suggest a scheme to improve the performance of such filtering.
- **4A.** A dynamic of discrete time system is described by the difference equation.

$$y(n) + \frac{3}{4}y(n-1) + \frac{1}{4}y(n-2) = x(n) + 2x(n-1)$$

It is required to implement the system on the digital platform. Realize the system using the lattice ladder structure. (04)

4B. A linear phase FIR digital filter is described by non-recursive difference equation,

 $y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2]$. Determine the filter coefficient such that it rejects a frequency component at $\omega_0 = \frac{\pi}{3}$ and its frequency response is normalized so that $|H(e^{j\omega})| = 1$ at DC frequency.

4C. Given the ideal frequency response of FIR filter shown in Fig.Q4C, determine the following

(i) the order and type of filter (ii) from fundamental the unit impulse response $h_d[n]$ (iii) the filter coefficient h[n]. Use Hamming window

- 5A. Show that the relation between analog and digital frequency with reference to bilinear transformation is nonlinear and it results in frequency compression. (02)
- **5B.** Design an ideal low-pass FIR digital filter using frequency sampling method to satisfy the following conditions.

Length of filter: 9

Sampling frequency: 20 kHz

Passband: $0 \le F \le 5 \text{ kHz}$

5C. Design a digital low-pass Butterworth filter using Bilinear transformation to meet the following specifications.

$$0.8414 \le \left| \left(He^{j\omega} \right) \right| \le 1 \quad ; \ 0 \le \omega \le \frac{\pi}{3}$$
$$\left| H\left(e^{j\omega} \right) \right| \le 0.3162 \quad ; \ \frac{\pi}{2} \le \omega \le \pi$$

Take $T = 1 \sec \theta$

(04)

(02)

(04)

(03)

(04)