
Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP SEMESTER EXAMINATIONS, DECEMBER 2017

SUBJECT: LINEAR CONTROL THEORY [ELE 3101]

REVISED CREDIT SYSTEM

	REVISED CREDIT SYSTEM	
Time	e: 3 Hours Date: 19 th December 2017 Max. Marks:	50
Instr	ructions to Candidates:	
	✤ Answer ALL the questions.	
	 Missing data may be suitably assumed. 	
	 Semi-log graph sheet will be provided 	
1A.	Compute the transfer function for the system representation shown in Fig. Q 1A using Mason Gain Formula.	(03)
1B.	Determine the rise time, peak time, percentage peak overshoot and settling time (2% tolerance) for a system depicted by the following closed loop transfer function $\frac{Y(s)}{R(s)} = \frac{8}{s^2 + 4s + 8}$	(03)
1.C	Draw the equivalent mechanical network and derive the transfer function $G(s) = \theta_2(s)/T(s)$, for the system shown in Fig. Q 1C.	(04)
2A.	Given the pole plot as shown in Fig. Q 2A, determine the following:	
	a) Damping ratio and natural frequency	
	b) Peak time and Settling time	
	c) Percentage overshoot	(03)
2B.	The mathematical model of a system configured in unity feedback control loop is given as:	
	$G(s) = \frac{K(s+4)}{s(s+1.2)(s+2)}$	
	Determine:	
	a) The range of <i>K</i> that keeps the system stable.	
	b) The value of <i>K</i> that makes the system oscillate	
	c) The frequency of oscillation when <i>K</i> is set to that value which makes the system oscillate	(03)
2C.	Block diagram of output speed control of electrical power from a turbine and generator pair is shown in Fig. Q 2C . Sketch the Nyquist diagram and using Nyquist criterion determine the range	

(04)

3A. Sketch the root locus for a unity feedback system with the following open loop transfer function and comment on the range of **'K'** required for system to be stable.

$$G(s) = \frac{K(s+5)}{(s+1)^2}$$
(03)

of 'K' for the system to be stable.

Page 1 of 3

- **3B.** For the bode magnitude plot of a minimum phase system as shown in **Fig. Q 3B**, determine the transfer function of the system.
- **3C.** Design a Phase lead compensator using frequency domain approach (**use semi-log graph sheet**) for a negative unity feedback system with the plant transfer function given as:

$$G(s) = \frac{K}{s(s+10)(s+1000)}$$

The design should satisfy the following specifications: Phase margin is at least 45° and Static error constant = 1000 s⁻¹

- **4A.** Explain and realize a lead network using passive elements and also realize the same with an operational amplifier. Highlight the main difference between the two approaches. **(03)**
- **4B.** In a unity feedback control system, the plant transfer function in the forward path is given as:

$$G(s) = \frac{K}{s(s+10)}$$

Determine the value of the gain **'K'** which results in the overall system having a damping ratio of 0.25.

4C. A unity feedback system has an open loop transfer function given by the following expression and is operating with a dominant pole damping ratio of 0.707

$$G(s) = \frac{K(s+6)}{(s+2)(s+3)(s+5)}$$

Design a suitable PD controller so as to reduce the settling time by a factor of 2. Also compare the transient and steady state performance of the compensated and uncompensated systems.

- 5A. Justify appropriately whether, the transfer function $G_c(s) = \frac{(s+1)}{(s+2)}$ can indeed function as a lead compensator. Further, determine the frequency at which the phase of $G_c(s)$ is maximum. (03)
- **5B.** Represent the electrical network shown in **Fig. Q 5B**, in state space physical variable form if the output is current through the resistor. Convert the state space to represent the same electrical network in transfer function form.
- **5C.** For the system described below, design a state feedback controller such that the compensated system has an overshoot of 10% and settling time of 3secs. Further design an observer which is ten times faster than the designed controller.

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$
(04)


(03)

(04)

(03)

(04)

(03)

